import torch import gradio as gr from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline, logging checkpoint = "Salesforce/codet5p-770m" tokenizer = AutoTokenizer.from_pretrained(checkpoint, trust_remote_code=True) model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint, cache_dir="models/") def code_gen(text): logging.set_verbosity(logging.CRITICAL) print("*** Pipeline:") pipe = pipeline( model=checkpoint, # tokenizer=tokenizer, max_new_tokens=124, temperature=0.7, top_p=0.95, device= "cuda" if torch.cuda.is_available() else "cpu", repetition_penalty=1.15 ) response = pipe(text) print(response) return response[0]['generated_text'] iface = gr.Interface(fn=code_gen, inputs=gr.inputs.Textbox( label="Input Source Code"), outputs="text", title="Code Generation") iface.launch()