|
from tensorboard.backend.event_processing import event_accumulator |
|
|
|
import os |
|
from shutil import copy2 |
|
from re import search as RSearch |
|
import pandas as pd |
|
from ast import literal_eval as LEval |
|
|
|
weights_dir = 'logs/weights/' |
|
|
|
def find_biggest_tensorboard(tensordir): |
|
try: |
|
files = [f for f in os.listdir(tensordir) if f.endswith('.0')] |
|
if not files: |
|
print("No files with the '.0' extension found!") |
|
return |
|
|
|
max_size = 0 |
|
biggest_file = "" |
|
|
|
for file in files: |
|
file_path = os.path.join(tensordir, file) |
|
if os.path.isfile(file_path): |
|
file_size = os.path.getsize(file_path) |
|
if file_size > max_size: |
|
max_size = file_size |
|
biggest_file = file |
|
|
|
return biggest_file |
|
|
|
except FileNotFoundError: |
|
print("Couldn't find your model!") |
|
return |
|
|
|
def main(model_name, save_freq, lastmdls): |
|
global lowestval_weight_dir, scl |
|
|
|
tensordir = os.path.join('logs', model_name) |
|
lowestval_weight_dir = os.path.join(tensordir, "lowestvals") |
|
|
|
latest_file = find_biggest_tensorboard(tensordir) |
|
|
|
if latest_file is None: |
|
print("Couldn't find a valid tensorboard file!") |
|
return |
|
|
|
tfile = os.path.join(tensordir, latest_file) |
|
|
|
ea = event_accumulator.EventAccumulator(tfile, |
|
size_guidance={ |
|
event_accumulator.COMPRESSED_HISTOGRAMS: 500, |
|
event_accumulator.IMAGES: 4, |
|
event_accumulator.AUDIO: 4, |
|
event_accumulator.SCALARS: 0, |
|
event_accumulator.HISTOGRAMS: 1, |
|
}) |
|
|
|
ea.Reload() |
|
ea.Tags() |
|
|
|
scl = ea.Scalars('loss/g/total') |
|
|
|
listwstep = {} |
|
|
|
for val in scl: |
|
if (val.step // save_freq) * save_freq in [val.step for val in scl]: |
|
listwstep[float(val.value)] = (val.step // save_freq) * save_freq |
|
|
|
lowest_vals = sorted(listwstep.keys())[:lastmdls] |
|
|
|
sorted_dict = {value: step for value, step in listwstep.items() if value in lowest_vals} |
|
|
|
return sorted_dict |
|
|
|
def selectweights(model_name, file_dict, weights_dir, lowestval_weight_dir): |
|
os.makedirs(lowestval_weight_dir, exist_ok=True) |
|
logdir = [] |
|
files = [] |
|
lbldict = { |
|
'Values': {}, |
|
'Names': {} |
|
} |
|
weights_dir_path = os.path.join(weights_dir, "") |
|
low_val_path = os.path.join(os.getcwd(), os.path.join(lowestval_weight_dir, "")) |
|
|
|
try: |
|
file_dict = LEval(file_dict) |
|
except Exception as e: |
|
print(f"Error! {e}") |
|
return f"Couldn't load tensorboard file! {e}" |
|
|
|
weights = [f for f in os.scandir(weights_dir)] |
|
for key, value in file_dict.items(): |
|
pattern = fr"^{model_name}_.*_s{value}\.pth$" |
|
matching_weights = [f.name for f in weights if f.is_file() and RSearch(pattern, f.name)] |
|
for weight in matching_weights: |
|
source_path = weights_dir_path + weight |
|
destination_path = os.path.join(lowestval_weight_dir, weight) |
|
|
|
copy2(source_path, destination_path) |
|
|
|
logdir.append(f"File = {weight} Value: {key}, Step: {value}") |
|
|
|
lbldict['Names'][weight] = weight |
|
lbldict['Values'][weight] = key |
|
|
|
files.append(low_val_path + weight) |
|
|
|
print(f"File = {weight} Value: {key}, Step: {value}") |
|
|
|
yield ('\n'.join(logdir), files, pd.DataFrame(lbldict)) |
|
|
|
|
|
return ''.join(logdir), files, pd.DataFrame(lbldict) |
|
|
|
|
|
if __name__ == "__main__": |
|
model = str(input("Enter the name of the model: ")) |
|
sav_freq = int(input("Enter save frequency of the model: ")) |
|
ds = main(model, sav_freq) |
|
|
|
if ds: selectweights(model, ds, weights_dir, lowestval_weight_dir) |
|
|