osanseviero
commited on
Commit
•
9ba2a1c
1
Parent(s):
bc1c247
update_demo (#109)
Browse files- up. (8ccd8119509ae8cdc703d6dee877c381c95ab5d2)
- README.md +1 -1
- app.py +142 -193
- packages.txt +1 -0
- requirements.txt +3 -1
README.md
CHANGED
@@ -4,7 +4,7 @@ emoji: 📉
|
|
4 |
colorFrom: pink
|
5 |
colorTo: yellow
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 3.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
---
|
|
|
4 |
colorFrom: pink
|
5 |
colorTo: yellow
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 3.38.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
---
|
app.py
CHANGED
@@ -1,202 +1,151 @@
|
|
1 |
-
import
|
2 |
-
|
3 |
import gradio as gr
|
4 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
from share_btn import community_icon_html, loading_icon_html, share_js
|
7 |
|
8 |
-
|
|
|
|
|
9 |
|
|
|
|
|
10 |
|
11 |
-
|
12 |
-
def
|
13 |
-
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
-
|
|
|
|
|
|
|
17 |
|
18 |
-
|
|
|
|
|
19 |
|
20 |
-
|
21 |
-
|
|
|
|
|
|
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
.
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
with block:
|
117 |
-
gr.HTML(
|
118 |
-
"""
|
119 |
-
<div style="text-align: center; max-width: 650px; margin: 0 auto;">
|
120 |
-
<div
|
121 |
-
style="
|
122 |
-
display: inline-flex;
|
123 |
-
align-items: center;
|
124 |
-
gap: 0.8rem;
|
125 |
-
font-size: 1.75rem;
|
126 |
-
"
|
127 |
-
>
|
128 |
-
<svg
|
129 |
-
width="0.65em"
|
130 |
-
height="0.65em"
|
131 |
-
viewBox="0 0 115 115"
|
132 |
-
fill="none"
|
133 |
-
xmlns="http://www.w3.org/2000/svg"
|
134 |
-
>
|
135 |
-
<rect width="23" height="23" fill="white"></rect>
|
136 |
-
<rect y="69" width="23" height="23" fill="white"></rect>
|
137 |
-
<rect x="23" width="23" height="23" fill="#AEAEAE"></rect>
|
138 |
-
<rect x="23" y="69" width="23" height="23" fill="#AEAEAE"></rect>
|
139 |
-
<rect x="46" width="23" height="23" fill="white"></rect>
|
140 |
-
<rect x="46" y="69" width="23" height="23" fill="white"></rect>
|
141 |
-
<rect x="69" width="23" height="23" fill="black"></rect>
|
142 |
-
<rect x="69" y="69" width="23" height="23" fill="black"></rect>
|
143 |
-
<rect x="92" width="23" height="23" fill="#D9D9D9"></rect>
|
144 |
-
<rect x="92" y="69" width="23" height="23" fill="#AEAEAE"></rect>
|
145 |
-
<rect x="115" y="46" width="23" height="23" fill="white"></rect>
|
146 |
-
<rect x="115" y="115" width="23" height="23" fill="white"></rect>
|
147 |
-
<rect x="115" y="69" width="23" height="23" fill="#D9D9D9"></rect>
|
148 |
-
<rect x="92" y="46" width="23" height="23" fill="#AEAEAE"></rect>
|
149 |
-
<rect x="92" y="115" width="23" height="23" fill="#AEAEAE"></rect>
|
150 |
-
<rect x="92" y="69" width="23" height="23" fill="white"></rect>
|
151 |
-
<rect x="69" y="46" width="23" height="23" fill="white"></rect>
|
152 |
-
<rect x="69" y="115" width="23" height="23" fill="white"></rect>
|
153 |
-
<rect x="69" y="69" width="23" height="23" fill="#D9D9D9"></rect>
|
154 |
-
<rect x="46" y="46" width="23" height="23" fill="black"></rect>
|
155 |
-
<rect x="46" y="115" width="23" height="23" fill="black"></rect>
|
156 |
-
<rect x="46" y="69" width="23" height="23" fill="black"></rect>
|
157 |
-
<rect x="23" y="46" width="23" height="23" fill="#D9D9D9"></rect>
|
158 |
-
<rect x="23" y="115" width="23" height="23" fill="#AEAEAE"></rect>
|
159 |
-
<rect x="23" y="69" width="23" height="23" fill="black"></rect>
|
160 |
-
</svg>
|
161 |
-
<h1 style="font-weight: 900; margin-bottom: 7px;">
|
162 |
-
Whisper
|
163 |
-
</h1>
|
164 |
-
</div>
|
165 |
-
<p style="margin-bottom: 10px; font-size: 94%">
|
166 |
-
Whisper is a general-purpose speech recognition model. It is trained on a large dataset of diverse audio and is also a multi-task model that can perform multilingual speech recognition as well as speech translation and language identification. This demo cuts audio after around 30 secs.
|
167 |
-
</p>
|
168 |
-
<p>You can skip the queue by using google colab for the space: <a href="https://colab.research.google.com/drive/1WJ98KHgZxFGrHiMm4TyWZllSew_Af_ff?usp=sharing"><img data-canonical-src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab" src="https://camo.githubusercontent.com/84f0493939e0c4de4e6dbe113251b4bfb5353e57134ffd9fcab6b8714514d4d1/68747470733a2f2f636f6c61622e72657365617263682e676f6f676c652e636f6d2f6173736574732f636f6c61622d62616467652e737667"></a></p>
|
169 |
-
</div>
|
170 |
-
"""
|
171 |
-
)
|
172 |
-
with gr.Group():
|
173 |
-
with gr.Box():
|
174 |
-
with gr.Row().style(mobile_collapse=False, equal_height=True):
|
175 |
-
audio = gr.Audio(
|
176 |
-
label="Input Audio",
|
177 |
-
show_label=False,
|
178 |
-
source="microphone",
|
179 |
-
type="filepath"
|
180 |
-
)
|
181 |
-
|
182 |
-
btn = gr.Button("Transcribe")
|
183 |
-
text = gr.Textbox(show_label=False, elem_id="result-textarea")
|
184 |
-
with gr.Group(elem_id="share-btn-container"):
|
185 |
-
community_icon = gr.HTML(community_icon_html, visible=False)
|
186 |
-
loading_icon = gr.HTML(loading_icon_html, visible=False)
|
187 |
-
share_button = gr.Button("Share to community", elem_id="share-btn", visible=False)
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
btn.click(inference, inputs=[audio], outputs=[text, community_icon, loading_icon, share_button])
|
193 |
-
share_button.click(None, [], [], _js=share_js)
|
194 |
-
|
195 |
-
gr.HTML('''
|
196 |
-
<div class="footer">
|
197 |
-
<p>Model by <a href="https://github.com/openai/whisper" style="text-decoration: underline;" target="_blank">OpenAI</a> - Gradio Demo by 🤗 Hugging Face
|
198 |
-
</p>
|
199 |
-
</div>
|
200 |
-
''')
|
201 |
-
|
202 |
-
block.launch()
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
import gradio as gr
|
4 |
+
import yt_dlp as youtube_dl
|
5 |
+
from transformers import pipeline
|
6 |
+
from transformers.pipelines.audio_utils import ffmpeg_read
|
7 |
+
|
8 |
+
import tempfile
|
9 |
+
import os
|
10 |
+
|
11 |
+
MODEL_NAME = "openai/whisper-large-v3"
|
12 |
+
BATCH_SIZE = 8
|
13 |
+
FILE_LIMIT_MB = 1000
|
14 |
+
YT_LENGTH_LIMIT_S = 3600 # limit to 1 hour YouTube files
|
15 |
+
|
16 |
+
device = 0 if torch.cuda.is_available() else "cpu"
|
17 |
+
|
18 |
+
pipe = pipeline(
|
19 |
+
task="automatic-speech-recognition",
|
20 |
+
model=MODEL_NAME,
|
21 |
+
chunk_length_s=30,
|
22 |
+
device=device,
|
23 |
+
)
|
24 |
|
|
|
25 |
|
26 |
+
def transcribe(inputs, task):
|
27 |
+
if inputs is None:
|
28 |
+
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
|
29 |
|
30 |
+
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
|
31 |
+
return text
|
32 |
|
33 |
+
|
34 |
+
def _return_yt_html_embed(yt_url):
|
35 |
+
video_id = yt_url.split("?v=")[-1]
|
36 |
+
HTML_str = (
|
37 |
+
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
|
38 |
+
" </center>"
|
39 |
+
)
|
40 |
+
return HTML_str
|
41 |
+
|
42 |
+
def download_yt_audio(yt_url, filename):
|
43 |
+
info_loader = youtube_dl.YoutubeDL()
|
44 |
|
45 |
+
try:
|
46 |
+
info = info_loader.extract_info(yt_url, download=False)
|
47 |
+
except youtube_dl.utils.DownloadError as err:
|
48 |
+
raise gr.Error(str(err))
|
49 |
|
50 |
+
file_length = info["duration_string"]
|
51 |
+
file_h_m_s = file_length.split(":")
|
52 |
+
file_h_m_s = [int(sub_length) for sub_length in file_h_m_s]
|
53 |
|
54 |
+
if len(file_h_m_s) == 1:
|
55 |
+
file_h_m_s.insert(0, 0)
|
56 |
+
if len(file_h_m_s) == 2:
|
57 |
+
file_h_m_s.insert(0, 0)
|
58 |
+
file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2]
|
59 |
|
60 |
+
if file_length_s > YT_LENGTH_LIMIT_S:
|
61 |
+
yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S))
|
62 |
+
file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s))
|
63 |
+
raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.")
|
64 |
+
|
65 |
+
ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"}
|
66 |
+
|
67 |
+
with youtube_dl.YoutubeDL(ydl_opts) as ydl:
|
68 |
+
try:
|
69 |
+
ydl.download([yt_url])
|
70 |
+
except youtube_dl.utils.ExtractorError as err:
|
71 |
+
raise gr.Error(str(err))
|
72 |
+
|
73 |
+
|
74 |
+
def yt_transcribe(yt_url, task, max_filesize=75.0):
|
75 |
+
html_embed_str = _return_yt_html_embed(yt_url)
|
76 |
+
|
77 |
+
with tempfile.TemporaryDirectory() as tmpdirname:
|
78 |
+
filepath = os.path.join(tmpdirname, "video.mp4")
|
79 |
+
download_yt_audio(yt_url, filepath)
|
80 |
+
with open(filepath, "rb") as f:
|
81 |
+
inputs = f.read()
|
82 |
+
|
83 |
+
inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate)
|
84 |
+
inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}
|
85 |
+
|
86 |
+
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
|
87 |
+
|
88 |
+
return html_embed_str, text
|
89 |
+
|
90 |
+
|
91 |
+
demo = gr.Blocks()
|
92 |
+
|
93 |
+
mf_transcribe = gr.Interface(
|
94 |
+
fn=transcribe,
|
95 |
+
inputs=[
|
96 |
+
gr.inputs.Audio(source="microphone", type="filepath", optional=True),
|
97 |
+
gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe"),
|
98 |
+
],
|
99 |
+
outputs="text",
|
100 |
+
layout="horizontal",
|
101 |
+
theme="huggingface",
|
102 |
+
title="Whisper Large V3: Transcribe Audio",
|
103 |
+
description=(
|
104 |
+
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the OpenAI Whisper"
|
105 |
+
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
|
106 |
+
" of arbitrary length."
|
107 |
+
),
|
108 |
+
allow_flagging="never",
|
109 |
+
)
|
110 |
+
|
111 |
+
file_transcribe = gr.Interface(
|
112 |
+
fn=transcribe,
|
113 |
+
inputs=[
|
114 |
+
gr.inputs.Audio(source="upload", type="filepath", optional=True, label="Audio file"),
|
115 |
+
gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe"),
|
116 |
+
],
|
117 |
+
outputs="text",
|
118 |
+
layout="horizontal",
|
119 |
+
theme="huggingface",
|
120 |
+
title="Whisper Large V3: Transcribe Audio",
|
121 |
+
description=(
|
122 |
+
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the OpenAI Whisper"
|
123 |
+
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
|
124 |
+
" of arbitrary length."
|
125 |
+
),
|
126 |
+
allow_flagging="never",
|
127 |
+
)
|
128 |
+
|
129 |
+
yt_transcribe = gr.Interface(
|
130 |
+
fn=yt_transcribe,
|
131 |
+
inputs=[
|
132 |
+
gr.inputs.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
|
133 |
+
gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe")
|
134 |
+
],
|
135 |
+
outputs=["html", "text"],
|
136 |
+
layout="horizontal",
|
137 |
+
theme="huggingface",
|
138 |
+
title="Whisper Large V3: Transcribe YouTube",
|
139 |
+
description=(
|
140 |
+
"Transcribe long-form YouTube videos with the click of a button! Demo uses the OpenAI Whisper checkpoint"
|
141 |
+
f" [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe video files of"
|
142 |
+
" arbitrary length."
|
143 |
+
),
|
144 |
+
allow_flagging="never",
|
145 |
+
)
|
146 |
+
|
147 |
+
with demo:
|
148 |
+
gr.TabbedInterface([mf_transcribe, file_transcribe, yt_transcribe], ["Microphone", "Audio file", "YouTube"])
|
149 |
+
|
150 |
+
demo.launch(enable_queue=True)
|
151 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
packages.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
ffmpeg
|
requirements.txt
CHANGED
@@ -1 +1,3 @@
|
|
1 |
-
transformers
|
|
|
|
|
|
1 |
+
git+https://github.com/huggingface/transformers
|
2 |
+
torch
|
3 |
+
yt-dlp
|