Spaces:
Sleeping
Sleeping
Jeril Sebastian
commited on
Commit
•
0b7cb96
1
Parent(s):
2f156d5
some fixes
Browse files- .gitignore +3 -0
- app.py +29 -23
- model.pth +0 -3
- requirements.txt +3 -2
.gitignore
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
*.pth
|
2 |
+
.venv
|
3 |
+
__pycache__
|
app.py
CHANGED
@@ -4,21 +4,19 @@ import torchvision.transforms as transforms
|
|
4 |
import torch.nn.functional as F
|
5 |
from pathlib import Path
|
6 |
import gradio as gr
|
7 |
-
from
|
8 |
-
import numpy as np
|
9 |
|
10 |
-
|
11 |
-
LABELS = Path('classes.txt').read_text().splitlines()
|
12 |
num_classes = len(LABELS)
|
13 |
|
14 |
model = nn.Sequential(
|
15 |
-
nn.Conv2d(1, 64, 3, padding=
|
16 |
nn.ReLU(),
|
17 |
nn.MaxPool2d(2),
|
18 |
-
nn.Conv2d(64, 128, 3, padding=
|
19 |
nn.ReLU(),
|
20 |
nn.MaxPool2d(2),
|
21 |
-
nn.Conv2d(128, 256, 3, padding=
|
22 |
nn.ReLU(),
|
23 |
nn.MaxPool2d(2),
|
24 |
nn.Flatten(),
|
@@ -27,32 +25,40 @@ model = nn.Sequential(
|
|
27 |
nn.Linear(512, num_classes),
|
28 |
)
|
29 |
|
30 |
-
|
31 |
-
|
|
|
32 |
model.eval()
|
33 |
|
34 |
-
transform = transforms.Compose([
|
35 |
-
transforms.Resize((28, 28)),
|
36 |
-
transforms.ToTensor(),
|
37 |
-
transforms.Normalize((0.5,), (0.5,))
|
38 |
-
])
|
39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
def predict(image):
|
42 |
image = image['composite']
|
43 |
-
|
44 |
-
input = transform(image).unsqueeze(0)
|
45 |
-
|
46 |
with torch.no_grad():
|
47 |
-
out = model(
|
48 |
|
49 |
-
print(out.shape)
|
50 |
probabilities = F.softmax(out[0], dim=0)
|
51 |
values, indices = torch.topk(probabilities, 5)
|
52 |
-
print(values, indices)
|
53 |
-
|
54 |
return {LABELS[i]: v.item() for i, v in zip(indices, values)}
|
55 |
|
56 |
|
57 |
-
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
import torch.nn.functional as F
|
5 |
from pathlib import Path
|
6 |
import gradio as gr
|
7 |
+
from huggingface_hub import hf_hub_download
|
|
|
8 |
|
9 |
+
LABELS = Path("classes.txt").read_text().splitlines()
|
|
|
10 |
num_classes = len(LABELS)
|
11 |
|
12 |
model = nn.Sequential(
|
13 |
+
nn.Conv2d(1, 64, 3, padding="same"),
|
14 |
nn.ReLU(),
|
15 |
nn.MaxPool2d(2),
|
16 |
+
nn.Conv2d(64, 128, 3, padding="same"),
|
17 |
nn.ReLU(),
|
18 |
nn.MaxPool2d(2),
|
19 |
+
nn.Conv2d(128, 256, 3, padding="same"),
|
20 |
nn.ReLU(),
|
21 |
nn.MaxPool2d(2),
|
22 |
nn.Flatten(),
|
|
|
25 |
nn.Linear(512, num_classes),
|
26 |
)
|
27 |
|
28 |
+
model_path = hf_hub_download(repo_id="jerilseb/quickdraw-small", filename="model.pth")
|
29 |
+
state_dict = torch.load(model_path, map_location="cpu")
|
30 |
+
model.load_state_dict(state_dict)
|
31 |
model.eval()
|
32 |
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
+
transform = transforms.Compose(
|
35 |
+
[
|
36 |
+
transforms.Resize((28, 28)),
|
37 |
+
transforms.ToTensor(),
|
38 |
+
transforms.Normalize((0.5,), (0.5,)),
|
39 |
+
]
|
40 |
+
)
|
41 |
|
42 |
def predict(image):
|
43 |
image = image['composite']
|
44 |
+
tensor = transform(image).unsqueeze(0)
|
|
|
|
|
45 |
with torch.no_grad():
|
46 |
+
out = model(tensor)
|
47 |
|
|
|
48 |
probabilities = F.softmax(out[0], dim=0)
|
49 |
values, indices = torch.topk(probabilities, 5)
|
|
|
|
|
50 |
return {LABELS[i]: v.item() for i, v in zip(indices, values)}
|
51 |
|
52 |
|
53 |
+
inputs = gr.ImageEditor(
|
54 |
+
type="pil",
|
55 |
+
height=720,
|
56 |
+
width=720,
|
57 |
+
layers=False,
|
58 |
+
image_mode="L",
|
59 |
+
brush=gr.Brush(default_color="white", default_size=20),
|
60 |
+
sources=[],
|
61 |
+
label="Draw a shape",
|
62 |
+
)
|
63 |
+
demo = gr.Interface(predict, inputs=inputs, outputs="label", live=True)
|
64 |
+
demo.launch(debug=True)
|
model.pth
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:217879299736265e793d5c72f21acc9b8646fa926f51fb3c31c46400e6bfe32c
|
3 |
-
size 6910492
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
@@ -1,3 +1,4 @@
|
|
1 |
-
torch
|
2 |
torchvision
|
3 |
-
|
|
|
|
1 |
+
torch==2.3.1
|
2 |
torchvision
|
3 |
+
gradio
|
4 |
+
huggingface_hub
|