import torch from torch import nn import torchvision.transforms as transforms import torch.nn.functional as F from pathlib import Path import gradio as gr from PIL import Image import numpy as np LABELS = Path('classes.txt').read_text().splitlines() num_classes = len(LABELS) model = nn.Sequential( nn.Conv2d(1, 64, 3, padding='same'), nn.ReLU(), nn.MaxPool2d(2), nn.Conv2d(64, 128, 3, padding='same'), nn.ReLU(), nn.MaxPool2d(2), nn.Conv2d(128, 256, 3, padding='same'), nn.ReLU(), nn.MaxPool2d(2), nn.Flatten(), nn.Linear(2304, 512), nn.ReLU(), nn.Linear(512, num_classes), ) state_dict = torch.load('model.pth', map_location='cpu') model.load_state_dict(state_dict, strict=False) model.eval() def predict(image): image = image['composite'] image = transforms.Resize((28, 28))(image) print(image) x = torch.tensor(im, dtype=torch.float32).unsqueeze(0).unsqueeze(0) / 255. with torch.no_grad(): out = model(x) probabilities = F.softmax(out[0], dim=0) values, indices = torch.topk(probabilities, 5) return {LABELS[i]: v.item() for i, v in zip(indices, values)} interface = gr.Interface(predict, inputs='sketchpad', outputs='label', live=True) interface.launch(debug=True)