Spaces:
Runtime error
Runtime error
actually classify images
Browse files
app.py
CHANGED
@@ -1,7 +1,41 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
demo = gr.Interface(fn=greet, inputs="text", outputs="text")
|
7 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from torchvision import transforms
|
4 |
+
from PIL import Image
|
5 |
+
import numpy as np
|
6 |
|
7 |
+
np.int = int
|
8 |
+
|
9 |
+
|
10 |
+
model = torch.hub.load('nicolalandro/ntsnet-cub200', 'ntsnet', pretrained=True,
|
11 |
+
**{'topN': 6, 'device':'cpu', 'num_classes': 200})
|
12 |
+
|
13 |
+
model.eval()
|
14 |
+
|
15 |
+
def classify_bird(img):
|
16 |
+
|
17 |
+
transform_test = transforms.Compose([
|
18 |
+
transforms.Resize((600, 600), Image.BILINEAR),
|
19 |
+
transforms.CenterCrop((448, 448)),
|
20 |
+
# transforms.RandomHorizontalFlip(), # only if train
|
21 |
+
transforms.ToTensor(),
|
22 |
+
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
|
23 |
+
])
|
24 |
+
|
25 |
+
scaled_img = transform_test(img)
|
26 |
+
torch_images = scaled_img.unsqueeze(0)
|
27 |
+
|
28 |
+
with torch.no_grad():
|
29 |
+
top_n_coordinates, concat_out, raw_logits, concat_logits, part_logits, top_n_index, top_n_prob = model(torch_images)
|
30 |
+
|
31 |
+
_, predict = torch.max(concat_logits, 1)
|
32 |
+
pred_id = predict.item()
|
33 |
+
bird_class = model.bird_classes[pred_id]
|
34 |
+
print(f"{bird_class=}")
|
35 |
+
|
36 |
+
return bird_class
|
37 |
+
|
38 |
+
image_component = gr.Image(type="pil", label="Bird Image")
|
39 |
+
demo = gr.Interface(fn=classify_bird, inputs=image_component, outputs="text")
|
40 |
|
|
|
41 |
demo.launch()
|