import gradio as gr import torch from torchvision import transforms from PIL import Image import numpy as np np.int = int model = torch.hub.load('nicolalandro/ntsnet-cub200', 'ntsnet', pretrained=True, **{'topN': 6, 'device':'cpu', 'num_classes': 200}) model.eval() def classify_bird(img): transform_test = transforms.Compose([ transforms.Resize((600, 600), Image.BILINEAR), transforms.CenterCrop((448, 448)), # transforms.RandomHorizontalFlip(), # only if train transforms.ToTensor(), transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)), ]) scaled_img = transform_test(img) torch_images = scaled_img.unsqueeze(0) with torch.no_grad(): top_n_coordinates, concat_out, raw_logits, concat_logits, part_logits, top_n_index, top_n_prob = model(torch_images) probs = torch.softmax(concat_logits, 1)[0] prob_dict = {bird_cls: float(prob) for bird_cls, prob in zip(model.bird_classes, probs)} return prob_dict image_component = gr.Image(type="pil", label="Bird Image") label_component = gr.Label(label="Classification result", num_top_classes=3) description = """ ## About 🤗 Tutorial for deploying a gradio app on huggingface. This was done during a [livestream](https://youtube.com/live/bN9WTxzLBRE) on YouTube. ## Links 🔗 🔗 YouTube Livestream: https://youtube.com/live/bN9WTxzLBRE\n 🔗 Torchvision Model: https://pytorch.org/hub/nicolalandro_ntsnet-cub200_ntsnet/\n 🔗 Paper: http://artelab.dista.uninsubria.it/res/research/papers/2019/2019-IVCNZ-Nawaz-Birds.pdf\n """ title = "Bird Classifier 🐣" demo = gr.Interface(fn=classify_bird, inputs=image_component, outputs=label_component, description=description, title=title) demo.launch()