import torch
import gradio as gr
from optimum.onnxruntime import ORTModelForCausalLM
from transformers import AutoTokenizer
from huggingface_hub import InferenceClient
# https://huggingface.co/collections/p1atdev/dart-v2-danbooru-tags-transformer-v2-66291115701b6fe773399b0a
model_id = "p1atdev/dart-v2-sft"
model = ORTModelForCausalLM.from_pretrained(model_id)
tokenizer = AutoTokenizer.from_pretrained(model_id)
tokenizer_with_prefix_space = AutoTokenizer.from_pretrained(model_id, add_prefix_space=True)
txt2imgclient = InferenceClient()
# https://huggingface.co/docs/transformers/v4.44.2/en/internal/generation_utils#transformers.NoBadWordsLogitsProcessor
def get_tokens_as_list(word_list):
"Converts a sequence of words into a list of tokens"
tokens_list = []
for word in word_list:
tokenized_word = tokenizer_with_prefix_space([word], add_special_tokens=False).input_ids[0]
tokens_list.append(tokenized_word)
return tokens_list
def generate_tags(general_tags: str, generate_image: bool = False):
# https://huggingface.co/p1atdev/dart-v2-sft#prompt-format
general_tags = ",".join(tag.strip() for tag in general_tags.split(",") if tag)
prompt = (
"<|bos|>"
# ""
# ""
"<|rating:general|><|aspect_ratio:tall|><|length:medium|>"
f"{general_tags}<|identity:none|><|input_end|>"
)
inputs = tokenizer(prompt, return_tensors="pt").input_ids
# bad_words_ids = get_tokens_as_list(word_list=[""])
with torch.no_grad():
outputs = model.generate(
inputs,
do_sample=True,
temperature=1.0,
top_p=1.0,
top_k=100,
max_new_tokens=128,
num_beams=1,
# bad_words_ids=bad_words_ids,
)
output_tags = ", ".join(
[tag for tag in tokenizer.batch_decode(outputs[0], skip_special_tokens=True) if tag.strip() != ""]
)
yield (output_tags, None)
if generate_image:
txt2img_prompt = f"score_9, score_8_up, score_7_up, {output_tags}"
img = txt2imgclient.text_to_image(
prompt=txt2img_prompt,
negative_prompt="score_6, score_5, score_4, rating_explicit, child, loli, shota",
num_inference_steps=25,
height=1152,
width=896,
model="John6666/wai-real-mix-v8-sdxl",
scheduler="EulerAncestralDiscreteScheduler",
)
yield (output_tags, img)
demo = gr.Interface(
fn=generate_tags,
inputs=[
gr.TextArea("1girl, black hair", lines=4),
gr.Checkbox(
False,
label="Generate Image",
info="Generating image using InferenceClient (really slow) with output_tags as prompt",
),
],
outputs=[
gr.Textbox(label="output_tags", show_copy_button=True),
gr.Image(label="generated_image", format="jpeg", type="pil"),
],
clear_btn=None,
analytics_enabled=False,
concurrency_limit=64,
)
demo.queue().launch()