Spaces:
Running
Running
import spaces # type: ignore | |
import os | |
import uuid | |
from PIL import Image | |
import gradio as gr | |
import numpy as np | |
import random | |
import torch | |
from diffusers import FluxPipeline | |
from sd_embed.embedding_funcs import get_weighted_text_embeddings_flux1 | |
dtype = torch.bfloat16 | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
pipe = FluxPipeline.from_pretrained( | |
"black-forest-labs/FLUX.1-dev", | |
torch_dtype=dtype, | |
) | |
pipe.to(device) | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 2048 | |
def infer( | |
prompt: str, | |
seed=42, | |
randomize_seed=False, | |
width=1024, | |
height=1024, | |
guidance_scale=5.0, | |
num_inference_steps=28, | |
progress=gr.Progress(track_tqdm=True), | |
): | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.Generator().manual_seed(seed) | |
prompt_embeds, pooled_prompt_embeds = get_weighted_text_embeddings_flux1( | |
pipe=pipe, prompt=prompt | |
) | |
image = pipe( | |
prompt_embeds=prompt_embeds, | |
pooled_prompt_embeds=pooled_prompt_embeds, | |
width=width, | |
height=height, | |
num_inference_steps=num_inference_steps, | |
generator=generator, | |
guidance_scale=guidance_scale, | |
).images[0] | |
assert isinstance( | |
image, Image.Image | |
), "The output is not an instance of Image.Image" | |
filepath = os.path.join("images", "{uuid}.png".format(uuid=str(uuid.uuid4().hex))) | |
image.save(filepath) | |
return ( | |
image, | |
gr.DownloadButton( | |
label="Download PNG", value=filepath, size="sm", visible=True | |
), | |
seed, | |
) | |
examples = [ | |
"a cat holding a sign that says flux.1 is great", | |
"an old man holding a sign that says Increase Zero-GPU Limit", | |
] | |
css = """ | |
#col-container { | |
margin: 0 auto; | |
max-width: 520px; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown("""# FLUX.1 | |
12B param rectified flow transformer guidance-distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/) | |
[[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)] | |
""") | |
with gr.Row(equal_height=False): | |
with gr.Column(): | |
prompt = gr.TextArea( | |
label="Prompt", | |
show_label=False, | |
lines=3, | |
placeholder="Enter your prompt", | |
container=False, | |
) | |
run_button = gr.Button("Run", variant="primary", scale=0) | |
result = gr.Image( | |
format="webp", | |
type="pil", | |
label="Result", | |
show_label=False, | |
show_download_button=False, | |
show_share_button=False, | |
) | |
download = gr.DownloadButton(size="sm", visible=False) | |
with gr.Accordion("Advanced Settings", open=False): | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
width = gr.Slider( | |
label="Width", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=832, | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1216, | |
) | |
with gr.Row(): | |
guidance_scale = gr.Slider( | |
label="Guidance Scale", | |
minimum=0, | |
maximum=15, | |
step=0.1, | |
value=3.5, | |
) | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", | |
minimum=1, | |
maximum=50, | |
step=1, | |
value=28, | |
) | |
gr.Examples( | |
examples=examples, | |
fn=infer, | |
inputs=[prompt], | |
outputs=[result, download, seed], | |
cache_examples="lazy", | |
) | |
gr.on( | |
triggers=[run_button.click], | |
fn=lambda: gr.update(visible=False), | |
outputs=download, | |
api_name=False, | |
) | |
gr.on( | |
triggers=[run_button.click, prompt.submit], | |
fn=infer, | |
inputs=[ | |
prompt, | |
seed, | |
randomize_seed, | |
width, | |
height, | |
guidance_scale, | |
num_inference_steps, | |
], | |
outputs=[result, download, seed], | |
) | |
if __name__ == "__main__": | |
os.makedirs("images", exist_ok=True) | |
demo.queue(api_open=True).launch() | |