fluxing / app.py
jerukperas's picture
revert
c18a289 verified
import spaces # type: ignore
import os
import uuid
from PIL import Image
import gradio as gr
import numpy as np
import random
import torch
from diffusers import FluxPipeline
from sd_embed.embedding_funcs import get_weighted_text_embeddings_flux1
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = FluxPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev",
torch_dtype=dtype,
)
pipe.to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
@spaces.GPU(duration=90)
def infer(
prompt: str,
seed=42,
randomize_seed=False,
width=1024,
height=1024,
guidance_scale=5.0,
num_inference_steps=28,
progress=gr.Progress(track_tqdm=True),
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
prompt_embeds, pooled_prompt_embeds = get_weighted_text_embeddings_flux1(
pipe=pipe, prompt=prompt
)
image = pipe(
prompt_embeds=prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
width=width,
height=height,
num_inference_steps=num_inference_steps,
generator=generator,
guidance_scale=guidance_scale,
).images[0]
assert isinstance(
image, Image.Image
), "The output is not an instance of Image.Image"
filepath = os.path.join("images", "{uuid}.png".format(uuid=str(uuid.uuid4().hex)))
image.save(filepath)
return (
image,
gr.DownloadButton(
label="Download PNG", value=filepath, size="sm", visible=True
),
seed,
)
examples = [
"a cat holding a sign that says flux.1 is great",
"an old man holding a sign that says Increase Zero-GPU Limit",
]
css = """
#col-container {
margin: 0 auto;
max-width: 520px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("""# FLUX.1
12B param rectified flow transformer guidance-distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/)
[[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)]
""")
with gr.Row(equal_height=False):
with gr.Column():
prompt = gr.TextArea(
label="Prompt",
show_label=False,
lines=3,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", variant="primary", scale=0)
result = gr.Image(
format="webp",
type="pil",
label="Result",
show_label=False,
show_download_button=False,
show_share_button=False,
)
download = gr.DownloadButton(size="sm", visible=False)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=832,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1216,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=0,
maximum=15,
step=0.1,
value=3.5,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=28,
)
gr.Examples(
examples=examples,
fn=infer,
inputs=[prompt],
outputs=[result, download, seed],
cache_examples="lazy",
)
gr.on(
triggers=[run_button.click],
fn=lambda: gr.update(visible=False),
outputs=download,
api_name=False,
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
],
outputs=[result, download, seed],
)
if __name__ == "__main__":
os.makedirs("images", exist_ok=True)
demo.queue(api_open=True).launch()