Spaces:
Runtime error
Runtime error
import random | |
import torch | |
import gradio as gr | |
from transformers import AutoConfig, AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForCausalLM, MistralForCausalLM | |
from peft import PeftModel, PeftConfig | |
from textwrap import wrap, fill | |
MAX_LENGTH=1000 | |
def wrap_text(text, width=90): | |
lines = text.split('\n') | |
wrapped_lines = [fill(line, width=width) for line in lines] | |
wrapped_text = '\n'.join(wrapped_lines) | |
return wrapped_text | |
def multimodal_prompt(user_input, system_prompt="You are an expert medical analyst:"): | |
formatted_input = f"<s>[INST]{system_prompt} {user_input}[/INST]" | |
encodeds = tokenizer(formatted_input, return_tensors="pt", add_special_tokens=False) | |
model_inputs = encodeds.to(device) | |
output = peft_model.generate( | |
**model_inputs, | |
max_length=MAX_LENGTH, | |
use_cache=True, | |
early_stopping=True, | |
bos_token_id=peft_model.config.bos_token_id, | |
eos_token_id=peft_model.config.eos_token_id, | |
pad_token_id=peft_model.config.eos_token_id, | |
temperature=0.1, | |
do_sample=True | |
) | |
response_text = tokenizer.decode(output[0], skip_special_tokens=True) | |
return response_text | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
base_model_id = "mistralai/Mistral-7B-v0.1" | |
model_directory = "Tonic/mistralmed" | |
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1", trust_remote_code=True, padding_side="left") | |
tokenizer.pad_token = tokenizer.eos_token | |
tokenizer.padding_side = 'left' | |
peft_config = PeftConfig.from_pretrained("Tonic/mistralmed", token="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") | |
peft_model = MistralForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1", trust_remote_code=True) | |
peft_model = PeftModel.from_pretrained(peft_model, "Tonic/mistralmed", token="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") | |
class ChatBot: | |
def __init__(self): | |
self.history = [] | |
def predict(self, user_input, system_prompt="You are an expert medical analyst:"): | |
formatted_input = f"<s>[INST]{system_prompt} {user_input}[/INST]" | |
user_input_ids = tokenizer.encode(formatted_input, return_tensors="pt") | |
response = peft_model.generate(input_ids=user_input_ids, max_length=512, pad_token_id=tokenizer.eos_token_id) | |
response_text = tokenizer.decode(response[0], skip_special_tokens=True) | |
return response_text | |
bot = ChatBot() | |
title = "👋🏻토닉의 미스트랄메드 채팅에 오신 것을 환영합니다🚀👋🏻Welcome to Tonic's MistralMed Chat🚀" | |
description = "이 공간을 사용하여 현재 모델을 테스트할 수 있습니다. [(Tonic/MistralMed)](https://huggingface.co/Tonic/MistralMed) 또는 이 공간을 복제하고 로컬 또는 🤗HuggingFace에서 사용할 수 있습니다. [Discord에서 함께 만들기 위해 Discord에 가입하십시오](https://discord.gg/VqTxc76K3u). You can use this Space to test out the current model [(Tonic/MistralMed)](https://huggingface.co/Tonic/MistralMed) or duplicate this Space and use it locally or on 🤗HuggingFace. [Join me on Discord to build together](https://discord.gg/VqTxc76K3u)." | |
examples = [["[Question:] What is the proper treatment for buccal herpes?", "You are a medicine and public health expert, you will receive a question, answer the question, and complete the answer"]] | |
iface = gr.Interface( | |
fn=bot.predict, | |
title=title, | |
description=description, | |
examples=examples, | |
inputs=["text", "text"], | |
outputs="text", | |
theme="ParityError/Anime" | |
) | |
iface.launch() |