|
import gradio as gr |
|
import streamlit as st |
|
from transformers import pipeline |
|
from datasets import load_dataset |
|
from huggingface_hub import hf_hub_download |
|
import subprocess |
|
import os |
|
|
|
|
|
repo_url = "https://huggingface.co/datasets/BEE-spoke-data/survivorslib-law-books" |
|
repo_dir = "./survivorslib-law-books" |
|
|
|
if not os.path.exists(repo_dir): |
|
subprocess.run(["git", "clone", repo_url], check=True) |
|
|
|
|
|
dataset_path = os.path.join(repo_dir, "train.parquet") |
|
ds = load_dataset("parquet", data_files=dataset_path) |
|
|
|
|
|
model_name = "nvidia/Llama-3.1-Nemotron-70B-Instruct-HF" |
|
pipe = pipeline("text-generation", model=model_name) |
|
|
|
|
|
def respond( |
|
message, |
|
history: list[tuple[str, str]], |
|
system_message, |
|
max_tokens, |
|
temperature, |
|
top_p, |
|
): |
|
messages = [{"role": "system", "content": system_message}] |
|
|
|
for val in history: |
|
if val[0]: |
|
messages.append({"role": "user", "content": val[0]}) |
|
if val[1]: |
|
messages.append({"role": "assistant", "content": val[1]}) |
|
|
|
messages.append({"role": "user", "content": message}) |
|
|
|
response = "" |
|
|
|
for message in pipe( |
|
prompt=message, |
|
max_length=max_tokens, |
|
do_sample=True, |
|
temperature=temperature, |
|
top_p=top_p, |
|
): |
|
token = message["generated_text"] |
|
response += token |
|
yield response |
|
|
|
|
|
def streamlit_interface(): |
|
st.title("Canadian Legal Text Generator") |
|
st.write("Enter a prompt related to Canadian legal data and generate text using Llama-3.1.") |
|
|
|
|
|
st.subheader("Sample Data from Canadian Legal Dataset:") |
|
st.write(ds[:5]) |
|
|
|
|
|
prompt = st.text_area("Enter your prompt:", placeholder="Type something...") |
|
|
|
if st.button("Generate Response"): |
|
if prompt: |
|
|
|
with st.spinner("Generating response..."): |
|
generated_text = pipe(prompt, max_length=100, do_sample=True, temperature=0.7)[0]["generated_text"] |
|
st.write("**Generated Text:**") |
|
st.write(generated_text) |
|
else: |
|
st.write("Please enter a prompt to generate a response.") |
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
st.sidebar.title("Choose an Interface") |
|
interface = st.sidebar.radio("Select", ("Streamlit", "Gradio")) |
|
|
|
if interface == "Streamlit": |
|
streamlit_interface() |
|
else: |
|
demo = gr.ChatInterface( |
|
respond, |
|
additional_inputs=[ |
|
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), |
|
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), |
|
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), |
|
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), |
|
], |
|
) |
|
demo.launch() |
|
|