Update app.py
Browse files
app.py
CHANGED
@@ -3,16 +3,30 @@ import streamlit as st
|
|
3 |
from transformers import pipeline
|
4 |
from datasets import load_dataset
|
5 |
from huggingface_hub import hf_hub_download
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
7 |
|
|
|
|
|
8 |
|
|
|
|
|
|
|
9 |
|
10 |
# Initialize text-generation pipeline with the model
|
11 |
model_name = "nvidia/Llama-3.1-Nemotron-70B-Instruct-HF"
|
12 |
pipe = pipeline("text-generation", model=model_name)
|
13 |
|
14 |
-
#
|
15 |
-
|
|
|
|
|
|
|
|
|
16 |
|
17 |
# Gradio Interface setup
|
18 |
def respond(
|
@@ -51,9 +65,10 @@ def streamlit_interface():
|
|
51 |
st.title("Canadian Legal Text Generator")
|
52 |
st.write("Enter a prompt related to Canadian legal data and generate text using Llama-3.1.")
|
53 |
|
54 |
-
# Show dataset sample
|
55 |
st.subheader("Sample Data from Canadian Legal Dataset:")
|
56 |
-
|
|
|
57 |
|
58 |
# Prompt input
|
59 |
prompt = st.text_area("Enter your prompt:", placeholder="Type something...")
|
@@ -86,4 +101,4 @@ if __name__ == "__main__":
|
|
86 |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
|
87 |
],
|
88 |
)
|
89 |
-
demo.launch()
|
|
|
3 |
from transformers import pipeline
|
4 |
from datasets import load_dataset
|
5 |
from huggingface_hub import hf_hub_download
|
6 |
+
import subprocess
|
7 |
+
import os
|
8 |
+
|
9 |
+
# Clone the dataset repository if not already cloned
|
10 |
+
repo_url = "https://huggingface.co/datasets/BEE-spoke-data/survivorslib-law-books"
|
11 |
+
repo_dir = "./survivorslib-law-books"
|
12 |
|
13 |
+
if not os.path.exists(repo_dir):
|
14 |
+
subprocess.run(["git", "clone", repo_url], check=True)
|
15 |
|
16 |
+
# Load the dataset from the cloned repository
|
17 |
+
dataset_path = os.path.join(repo_dir, "train.parquet")
|
18 |
+
ds = load_dataset("parquet", data_files=dataset_path)
|
19 |
|
20 |
# Initialize text-generation pipeline with the model
|
21 |
model_name = "nvidia/Llama-3.1-Nemotron-70B-Instruct-HF"
|
22 |
pipe = pipeline("text-generation", model=model_name)
|
23 |
|
24 |
+
# Preprocess dataset (assuming it has a 'text' or 'content' column for feeding to the model)
|
25 |
+
# If the dataset is different, update the field names accordingly
|
26 |
+
def preprocess_data(dataset):
|
27 |
+
# Here, we assume that the dataset has a 'content' column with legal text
|
28 |
+
# Adjust the column name as needed (for example, it might be 'text' or 'paragraph')
|
29 |
+
return dataset['content'][:5] # Displaying only the first 5 entries for brevity
|
30 |
|
31 |
# Gradio Interface setup
|
32 |
def respond(
|
|
|
65 |
st.title("Canadian Legal Text Generator")
|
66 |
st.write("Enter a prompt related to Canadian legal data and generate text using Llama-3.1.")
|
67 |
|
68 |
+
# Show dataset sample (first 5 entries)
|
69 |
st.subheader("Sample Data from Canadian Legal Dataset:")
|
70 |
+
sample_data = preprocess_data(ds['train']) # Assuming 'train' split
|
71 |
+
st.write(sample_data) # Display the first 5 rows of the dataset
|
72 |
|
73 |
# Prompt input
|
74 |
prompt = st.text_area("Enter your prompt:", placeholder="Type something...")
|
|
|
101 |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
|
102 |
],
|
103 |
)
|
104 |
+
demo.launch()
|