import gradio as gr import streamlit as st from transformers import pipeline from datasets import load_dataset from huggingface_hub import hf_hub_download import subprocess import os # Clone the dataset repository if not already cloned repo_url = "https://huggingface.co/datasets/BEE-spoke-data/survivorslib-law-books" repo_dir = "./survivorslib-law-books" if not os.path.exists(repo_dir): subprocess.run(["git", "clone", repo_url], check=True) # Load the dataset from the cloned repository dataset_path = os.path.join(repo_dir, "train.parquet") ds = load_dataset("parquet", data_files=dataset_path) # Initialize text-generation pipeline with the model model_name = "nvidia/Llama-3.1-Nemotron-70B-Instruct-HF" pipe = pipeline("text-generation", model=model_name) # Preprocess dataset (assuming it has a 'text' or 'content' column for feeding to the model) # If the dataset is different, update the field names accordingly def preprocess_data(dataset): # Here, we assume that the dataset has a 'content' column with legal text # Adjust the column name as needed (for example, it might be 'text' or 'paragraph') return dataset['content'][:5] # Displaying only the first 5 entries for brevity # Gradio Interface setup def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for message in pipe( prompt=message, max_length=max_tokens, do_sample=True, temperature=temperature, top_p=top_p, ): token = message["generated_text"] response += token yield response # Streamlit Interface setup def streamlit_interface(): st.title("Canadian Legal Text Generator") st.write("Enter a prompt related to Canadian legal data and generate text using Llama-3.1.") # Show dataset sample (first 5 entries) st.subheader("Sample Data from Canadian Legal Dataset:") sample_data = preprocess_data(ds['train']) # Assuming 'train' split st.write(sample_data) # Display the first 5 rows of the dataset # Prompt input prompt = st.text_area("Enter your prompt:", placeholder="Type something...") if st.button("Generate Response"): if prompt: # Generate text based on the prompt with st.spinner("Generating response..."): generated_text = pipe(prompt, max_length=100, do_sample=True, temperature=0.7)[0]["generated_text"] st.write("**Generated Text:**") st.write(generated_text) else: st.write("Please enter a prompt to generate a response.") # Running Gradio and Streamlit interfaces if __name__ == "__main__": st.sidebar.title("Choose an Interface") interface = st.sidebar.radio("Select", ("Streamlit", "Gradio")) if interface == "Streamlit": streamlit_interface() else: demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), ], ) demo.launch()