Spaces:
Runtime error
Runtime error
import streamlit as st | |
from transformers import pipeline | |
from sklearn.cluster import KMeans | |
import numpy as np | |
# Mock data | |
mock_words = [ | |
"apple", "banana", "cherry", "date", # Fruits | |
"car", "truck", "bus", "bicycle", # Vehicles | |
"red", "blue", "green", "yellow", # Colors | |
"cat", "dog", "rabbit", "hamster" # Pets | |
] | |
# Embedding model | |
embedder = pipeline('feature-extraction', model='distilbert-base-uncased') | |
def embed_words(words): | |
embeddings = embedder(words) | |
return np.array([np.mean(embedding[0], axis=0) for embedding in embeddings]) | |
def cluster_words(words): | |
embeddings = embed_words(words) | |
kmeans = KMeans(n_clusters=4, random_state=0).fit(embeddings) | |
clusters = {i: [] for i in range(4)} | |
for word, label in zip(words, kmeans.labels_): | |
clusters[label].append(word) | |
return clusters | |
def main(): | |
st.title("NYT Connections Solver") | |
if st.button("Generate Clusters"): | |
clusters = cluster_words(mock_words) | |
for i, words in clusters.items(): | |
st.write(f"Group {i+1}: {', '.join(words)}") | |
if __name__ == "__main__": | |
main() | |