File size: 22,037 Bytes
cfa5142
0f36b51
cfa5142
17abb6a
cfa5142
 
 
 
b0345e8
cfa5142
 
888e2b8
cfa5142
 
 
888e2b8
 
cfa5142
 
 
6df697d
 
 
cfa5142
3423be2
5929ef8
e56e825
5f8864d
cfa5142
5f8864d
cfa5142
 
 
 
 
 
 
 
 
6df697d
cfa5142
 
 
e56e825
 
cfa5142
 
60434a4
2878798
3423be2
cfa5142
0f36b51
6df697d
0f36b51
17abb6a
 
 
 
 
 
 
6df697d
 
 
b109f8e
 
 
6df697d
888e2b8
cfa5142
 
888e2b8
6df697d
888e2b8
b0345e8
cfa5142
0f36b51
 
2878798
 
b109f8e
0f36b51
 
 
888e2b8
0f36b51
 
 
cfa5142
 
b109f8e
cfa5142
 
 
 
0f36b51
1de582e
8d52a7d
2878798
e56e825
 
17abb6a
 
 
 
 
 
 
e56e825
 
6df697d
 
 
 
2878798
3423be2
 
 
 
 
 
 
2878798
 
6df697d
2878798
3423be2
2878798
cfa5142
2c719e3
 
17abb6a
 
 
 
 
 
 
 
 
 
 
 
 
6df697d
 
 
2c719e3
 
 
 
87a101a
 
 
1de582e
 
87a101a
cfa5142
2c719e3
 
 
41938cd
 
 
17abb6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6df697d
 
 
2c719e3
 
cfa5142
87a101a
 
 
41938cd
 
87a101a
 
 
e56e825
1de582e
2c719e3
 
e56e825
 
 
 
 
 
17abb6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e56e825
 
2878798
 
e56e825
 
 
2878798
6df697d
2878798
 
 
 
 
6df697d
2878798
 
e56e825
1de582e
2878798
6df697d
2878798
e56e825
 
17abb6a
 
 
 
 
 
 
 
 
 
 
 
e56e825
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1de582e
e56e825
 
0f36b51
2878798
6df697d
 
 
 
 
2878798
17abb6a
 
 
 
 
 
 
 
 
 
 
 
 
 
6df697d
 
 
 
e56e825
 
 
 
 
 
6df697d
 
 
 
e56e825
 
 
 
 
 
 
 
 
 
 
 
 
6df697d
 
 
 
 
 
e56e825
6df697d
2878798
3423be2
 
 
 
 
 
 
17abb6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e56e825
 
1de582e
e56e825
 
 
 
 
 
888e2b8
e56e825
5929ef8
 
719689e
e56e825
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
075107e
e56e825
a8fcc23
888e2b8
a8fcc23
 
3423be2
719689e
3423be2
888e2b8
3423be2
 
 
 
2c719e3
 
 
 
 
 
17abb6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c719e3
 
 
0f36b51
002d880
 
 
 
 
 
 
 
 
 
 
 
 
 
2c719e3
 
 
 
 
 
002d880
2c719e3
 
 
 
16bf670
41938cd
 
ebdd2a9
41938cd
6df697d
2c719e3
16bf670
2c719e3
 
6df697d
 
 
002d880
2c719e3
16bf670
8d52a7d
2c719e3
 
 
0f36b51
cfa5142
0f36b51
16bf670
 
 
 
 
17abb6a
16bf670
ebdd2a9
 
002d880
16bf670
6df697d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
from sam2.automatic_mask_generator import SAM2AutomaticMaskGenerator
from sam2.build_sam import build_sam2, build_sam2_video_predictor
from sam2.sam2_image_predictor import SAM2ImagePredictor
from typing import Dict, List, Optional, Tuple, Any
import torch
import os
from datetime import datetime
import numpy as np
import gradio as gr

from modules.model_downloader import (
    AVAILABLE_MODELS, DEFAULT_MODEL_TYPE,
    is_sam_exist,
    download_sam_model_url
)
from modules.paths import (MODELS_DIR, TEMP_OUT_DIR, TEMP_DIR, MODEL_CONFIGS, OUTPUT_DIR)
from modules.constants import (BOX_PROMPT_MODE, AUTOMATIC_MODE, COLOR_FILTER, PIXELIZE_FILTER, IMAGE_FILE_EXT)
from modules.mask_utils import (
    save_psd_with_masks,
    create_mask_combined_images,
    create_mask_gallery,
    create_mask_pixelized_image,
    create_solid_color_mask_image
)
from modules.video_utils import (get_frames_from_dir, create_video_from_frames, get_video_info, extract_frames,
                                 extract_sound, clean_temp_dir, clean_files_with_extension)
from modules.utils import save_image
from modules.logger_util import get_logger

logger = get_logger()


class SamInference:
    def __init__(self,
                 model_dir: str = MODELS_DIR,
                 output_dir: str = OUTPUT_DIR
                 ):
        self.model = None
        self.available_models = list(AVAILABLE_MODELS.keys())
        self.current_model_type = DEFAULT_MODEL_TYPE
        self.model_dir = model_dir
        self.output_dir = output_dir
        self.model_path = os.path.join(self.model_dir, AVAILABLE_MODELS[DEFAULT_MODEL_TYPE][0])
        self.device = "cuda" if torch.cuda.is_available() else "cpu"
        self.dtype = torch.float16 if torch.cuda.is_available() else torch.float32
        self.mask_generator = None
        self.image_predictor = None
        self.video_predictor = None
        self.video_inference_state = None
        self.video_info = None

    def load_model(self,
                   model_type: Optional[str] = None,
                   load_video_predictor: bool = False):
        """
        Load the model from the model directory. If the model is not found, download it from the URL.

        Args:
            model_type (str): The model type to load.
            load_video_predictor (bool): Load the video predictor model.
        """
        if model_type is None:
            model_type = DEFAULT_MODEL_TYPE

        config_path = MODEL_CONFIGS[model_type]
        config_dir, config_name = os.path.split(config_path)

        filename, url = AVAILABLE_MODELS[model_type]

        model_path = os.path.join(self.model_dir, filename)

        if not is_sam_exist(model_dir=self.model_dir, model_type=model_type):
            logger.info(f"No SAM2 model found, downloading {model_type} model...")
            download_sam_model_url(model_dir=self.model_dir, model_type=model_type)
        logger.info(f"Applying configs to {model_type} model..")

        if load_video_predictor:
            try:
                self.model = None
                self.video_predictor = build_sam2_video_predictor(
                    config_file=config_name,
                    ckpt_path=model_path,
                    device=self.device
                )
                return
            except Exception as e:
                logger.exception("Error while loading SAM2 model for video predictor")

        try:
            self.model = build_sam2(
                config_file=config_name,
                ckpt_path=model_path,
                device=self.device
            )
        except Exception as e:
            logger.exception("Error while loading SAM2 model")
            raise RuntimeError(f"Failed to load model") from e

    def init_video_inference_state(self,
                                   vid_input: str,
                                   model_type: Optional[str] = None):
        """
        Initialize the video inference state for the video predictor.

        Args:
            vid_input (str): The video frames directory.
            model_type (str): The model type to load.
        """
        if model_type is None:
            model_type = self.current_model_type

        if self.video_predictor is None or model_type != self.current_model_type:
            self.current_model_type = model_type
            self.load_model(model_type=model_type, load_video_predictor=True)

        self.video_info = get_video_info(vid_input)
        frames_temp_dir = TEMP_DIR
        clean_temp_dir(frames_temp_dir)
        extract_frames(vid_input, frames_temp_dir)
        if self.video_info.has_sound:
            extract_sound(vid_input, frames_temp_dir)

        if self.video_inference_state is not None:
            self.video_predictor.reset_state(self.video_inference_state)
            self.video_inference_state = None

        self.video_inference_state = self.video_predictor.init_state(video_path=frames_temp_dir)

    def generate_mask(self,
                      image: np.ndarray,
                      model_type: str,
                      **params) -> List[Dict[str, Any]]:
        """
        Generate masks with Automatic segmentation. Default hyperparameters are in './configs/default_hparams.yaml.'

        Args:
            image (np.ndarray): The input image.
            model_type (str): The model type to load.
            **params: The hyperparameters for the mask generator.

        Returns:
            List[Dict[str, Any]]: The auto-generated mask data.
        """

        if self.model is None or self.current_model_type != model_type:
            self.current_model_type = model_type
            self.load_model(model_type=model_type)
        self.mask_generator = SAM2AutomaticMaskGenerator(
            model=self.model,
            **params
        )
        try:
            generated_masks = self.mask_generator.generate(image)
        except Exception as e:
            logger.exception(f"Error while auto generating masks : {e}")
            raise RuntimeError(f"Failed to generate masks") from e
        return generated_masks

    def predict_image(self,
                      image: np.ndarray,
                      model_type: str,
                      box: Optional[np.ndarray] = None,
                      point_coords: Optional[np.ndarray] = None,
                      point_labels: Optional[np.ndarray] = None,
                      **params) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
        """
        Predict image with prompt data.

        Args:
            image (np.ndarray): The input image.
            model_type (str): The model type to load.
            box (np.ndarray): The box prompt data.
            point_coords (np.ndarray): The point coordinates prompt data.
            point_labels (np.ndarray): The point labels prompt data.
            **params: The hyperparameters for the mask generator.

        Returns:
            np.ndarray: The predicted masks output in CxHxW format.
            np.ndarray: Array of scores for each mask.
            np.ndarray: Array of logits in CxHxW format.
        """
        if self.model is None or self.current_model_type != model_type:
            self.current_model_type = model_type
            self.load_model(model_type=model_type)
        self.image_predictor = SAM2ImagePredictor(sam_model=self.model)
        self.image_predictor.set_image(image)

        try:
            masks, scores, logits = self.image_predictor.predict(
                box=box,
                point_coords=point_coords,
                point_labels=point_labels,
                multimask_output=params["multimask_output"],
            )
        except Exception as e:
            logger.exception(f"Error while predicting image with prompt: {str(e)}")
            raise RuntimeError(f"Failed to predict image with prompt") from e
        return masks, scores, logits

    def add_prediction_to_frame(self,
                                frame_idx: int,
                                obj_id: int,
                                inference_state: Optional[Dict] = None,
                                points: Optional[np.ndarray] = None,
                                labels: Optional[np.ndarray] = None,
                                box: Optional[np.ndarray] = None) -> Tuple[int, int, torch.Tensor]:
        """
        Add prediction to the current video inference state. inference state must be initialized before calling this method.

        Args:
            frame_idx (int): The frame index of the video.
            obj_id (int): The object id for the frame.
            inference_state (Dict): The inference state for the video predictor.
            points (np.ndarray): The point coordinates prompt data.
            labels (np.ndarray): The point labels prompt data.
            box (np.ndarray): The box prompt data.

        Returns:
            int: The frame index of the corresponding prediction.
            int: The object id of the corresponding prediction.
            torch.Tensor: The mask logits output in CxHxW format.
        """

        if (self.video_predictor is None or
                inference_state is None and self.video_inference_state is None):
            logger.exception("Error while predicting frame from video, load video predictor first")

        if inference_state is None:
            inference_state = self.video_inference_state

        try:
            out_frame_idx, out_obj_ids, out_mask_logits = self.video_predictor.add_new_points_or_box(
                inference_state=inference_state,
                frame_idx=frame_idx,
                obj_id=obj_id,
                points=points,
                labels=labels,
                box=box
            )
        except Exception as e:
            logger.exception(f"Error while predicting frame with prompt: {str(e)}")
            raise RuntimeError(f"Failed to predicting frame with prompt") from e

        return out_frame_idx, out_obj_ids, out_mask_logits

    def propagate_in_video(self,
                           inference_state: Optional[Dict] = None,):
        """
        Propagate in the video with the tracked predictions for each frame. Currently only supports
        single frame tracking.

        Args:
            inference_state (Dict): The inference state for the video predictor. Use self.video_inference_state if None.

        Returns:
            Dict: The video segments with the image and mask data. It has frame index as each key and each key has
                "image" and "mask" data. "image" key contains the path of the original image file and "mask" key contains
                the np.ndarray mask output.
        """
        if inference_state is None and self.video_inference_state is None:
            logger.exception("Error while propagating in video, load video predictor first")

        if inference_state is None:
            inference_state = self.video_inference_state

        video_segments = {}

        try:
            generator = self.video_predictor.propagate_in_video(
                inference_state=inference_state,
                start_frame_idx=0
            )
            images = get_frames_from_dir(vid_dir=TEMP_DIR, as_numpy=True)

            with torch.autocast(device_type=self.device, dtype=torch.float16):
                for out_frame_idx, out_obj_ids, out_mask_logits in generator:
                    mask = (out_mask_logits[0] > 0.0).cpu().numpy()
                    video_segments[out_frame_idx] = {
                        "image": images[out_frame_idx],
                        "mask": mask
                    }
        except Exception as e:
            logger.exception(f"Error while propagating in video: {str(e)}")
            raise RuntimeError(f"Failed to propagate in video") from e

        return video_segments

    def add_filter_to_preview(self,
                              image_prompt_input_data: Dict,
                              filter_mode: str,
                              frame_idx: int,
                              pixel_size: Optional[int] = None,
                              color_hex: Optional[str] = None,
                              ):
        """
        Add filter to the preview image with the prompt data. Specially made for gradio app.
        It adds prediction tracking to the self.video_inference_state and returns the filtered image.

        Args:
            image_prompt_input_data (Dict): The image prompt data.
            filter_mode (str): The filter mode to apply. ["Solid Color", "Pixelize"]
            frame_idx (int): The frame index of the video.
            pixel_size (int): The pixel size for the pixelize filter.
            color_hex (str): The color hex code for the solid color filter.

        Returns:
            np.ndarray: The filtered image output.
        """
        if self.video_predictor is None or self.video_inference_state is None:
            logger.exception("Error while adding filter to preview, load video predictor first")
            raise f"Error while adding filter to preview"

        if not image_prompt_input_data["points"]:
            error_message = ("No prompt data provided. If this is an incorrect flag, "
                             "Please press the eraser button (on the image prompter) and add your prompts again.")
            logger.error(error_message)
            raise gr.Error(error_message, duration=20)

        image, prompt = image_prompt_input_data["image"], image_prompt_input_data["points"]
        image = np.array(image.convert("RGB"))

        point_labels, point_coords, box = self.handle_prompt_data(prompt)
        obj_id = frame_idx

        self.video_predictor.reset_state(self.video_inference_state)
        idx, scores, logits = self.add_prediction_to_frame(
            frame_idx=frame_idx,
            obj_id=obj_id,
            inference_state=self.video_inference_state,
            points=point_coords,
            labels=point_labels,
            box=box
        )
        masks = (logits[0] > 0.0).cpu().numpy()
        generated_masks = self.format_to_auto_result(masks)

        if filter_mode == COLOR_FILTER:
            image = create_solid_color_mask_image(image, generated_masks, color_hex)

        elif filter_mode == PIXELIZE_FILTER:
            image = create_mask_pixelized_image(image, generated_masks, pixel_size)

        return image

    def create_filtered_video(self,
                              image_prompt_input_data: Dict,
                              filter_mode: str,
                              frame_idx: int,
                              pixel_size: Optional[int] = None,
                              color_hex: Optional[str] = None
                              ):
        """
        Create a whole filtered video with video_inference_state. Currently only one frame tracking is supported.
        This needs FFmpeg to run. Returns two output path because of the gradio app.

        Args:
            image_prompt_input_data (Dict): The image prompt data.
            filter_mode (str): The filter mode to apply. ["Solid Color", "Pixelize"]
            frame_idx (int): The frame index of the video.
            pixel_size (int): The pixel size for the pixelize filter.
            color_hex (str): The color hex code for the solid color filter.

        Returns:
            str: The output video path.
            str: The output video path.
        """

        if self.video_predictor is None or self.video_inference_state is None:
            logger.exception("Error while adding filter to preview, load video predictor first")
            raise RuntimeError("Error while adding filter to preview")

        if not image_prompt_input_data["points"]:
            error_message = ("No prompt data provided. If this is an incorrect flag, "
                             "Please press the eraser button (on the image prompter) and add your prompts again.")
            logger.error(error_message)
            raise gr.Error(error_message, duration=20)
        output_dir = os.path.join(self.output_dir, "filter")

        clean_files_with_extension(TEMP_OUT_DIR, IMAGE_FILE_EXT)
        self.video_predictor.reset_state(self.video_inference_state)

        prompt_frame_image, prompt = image_prompt_input_data["image"], image_prompt_input_data["points"]

        point_labels, point_coords, box = self.handle_prompt_data(prompt)
        obj_id = frame_idx

        idx, scores, logits = self.add_prediction_to_frame(
            frame_idx=frame_idx,
            obj_id=obj_id,
            inference_state=self.video_inference_state,
            points=point_coords,
            labels=point_labels,
            box=box
        )

        video_segments = self.propagate_in_video(inference_state=self.video_inference_state)
        for frame_index, info in video_segments.items():
            orig_image, masks = info["image"], info["mask"]
            masks = self.format_to_auto_result(masks)

            if filter_mode == COLOR_FILTER:
                filtered_image = create_solid_color_mask_image(orig_image, masks, color_hex)

            elif filter_mode == PIXELIZE_FILTER:
                filtered_image = create_mask_pixelized_image(orig_image, masks, pixel_size)

            save_image(image=filtered_image, output_dir=TEMP_OUT_DIR)

        if len(video_segments) == 1:
            out_image = save_image(image=filtered_image, output_dir=output_dir)
            return None, out_image

        out_video = create_video_from_frames(
            frames_dir=TEMP_OUT_DIR,
            frame_rate=self.video_info.frame_rate,
            output_dir=output_dir,
        )

        return out_video, out_video

    def divide_layer(self,
                     image_input: np.ndarray,
                     image_prompt_input_data: Dict,
                     input_mode: str,
                     model_type: str,
                     *params):
        """
        Divide the layer with the given prompt data and save psd file.

        Args:
            image_input (np.ndarray): The input image.
            image_prompt_input_data (Dict): The image prompt data.
            input_mode (str): The input mode for the image prompt data. ["Automatic", "Box Prompt"]
            model_type (str): The model type to load.
            *params: The hyperparameters for the mask generator.

        Returns:
            List[np.ndarray]: List of images by predicted masks.
            str: The output path of the psd file.
        """

        timestamp = datetime.now().strftime("%m%d%H%M%S")
        output_file_name = f"result-{timestamp}.psd"
        output_path = os.path.join(self.output_dir, "psd", output_file_name)
        # Pre-processed gradio components
        hparams = {
            'points_per_side': int(params[0]),
            'points_per_batch': int(params[1]),
            'pred_iou_thresh': float(params[2]),
            'stability_score_thresh': float(params[3]),
            'stability_score_offset': float(params[4]),
            'crop_n_layers': int(params[5]),
            'box_nms_thresh': float(params[6]),
            'crop_n_points_downscale_factor': int(params[7]),
            'min_mask_region_area': int(params[8]),
            'use_m2m': bool(params[9]),
            'multimask_output': bool(params[10])
        }

        if input_mode == AUTOMATIC_MODE:
            image = image_input

            generated_masks = self.generate_mask(
                image=image,
                model_type=model_type,
                **hparams
            )

        elif input_mode == BOX_PROMPT_MODE:
            image = image_prompt_input_data["image"]
            image = np.array(image.convert("RGB"))
            prompt = image_prompt_input_data["points"]
            if len(prompt) == 0:
                return [image], []

            point_labels, point_coords, box = self.handle_prompt_data(prompt)

            predicted_masks, scores, logits = self.predict_image(
                image=image,
                model_type=model_type,
                box=box,
                point_coords=point_coords,
                point_labels=point_labels,
                multimask_output=hparams["multimask_output"]
            )
            generated_masks = self.format_to_auto_result(predicted_masks)

        save_psd_with_masks(image, generated_masks, output_path)
        mask_combined_image = create_mask_combined_images(image, generated_masks)
        gallery = create_mask_gallery(image, generated_masks)
        gallery = [mask_combined_image] + gallery

        return gallery, output_path

    @staticmethod
    def format_to_auto_result(
        masks: np.ndarray
    ):
        """Format the masks to auto result format for convenience."""
        place_holder = 0
        if len(masks.shape) <= 3:
            masks = np.expand_dims(masks, axis=0)
        result = [{"segmentation": mask[0], "area": place_holder} for mask in masks]
        return result

    @staticmethod
    def handle_prompt_data(
        prompt_data: List
    ):
        """
        Handle data from ImageInputPrompter.

        Args:
            prompt_data (Dict): A dictionary containing the 'prompt' key with a list of prompts.

        Returns:
            point_labels (List): list of points labels.
            point_coords (List): list of points coords.
            box (List): list of box datas.
        """
        point_labels, point_coords, box = [], [], []

        for x1, y1, left_click_indicator, x2, y2, point_indicator in prompt_data:
            is_point = point_indicator == 4.0
            if is_point:
                point_labels.append(left_click_indicator)
                point_coords.append([x1, y1])
            else:
                box.append([x1, y1, x2, y2])

        point_labels = np.array(point_labels) if point_labels else None
        point_coords = np.array(point_coords) if point_coords else None
        box = np.array(box) if box else None

        return point_labels, point_coords, box