File size: 44,197 Bytes
f5ba9ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

import torch
import torch.distributed
import torch.nn.functional as F

from torch.nn.init import trunc_normal_

from sam2.modeling.sam.mask_decoder import MaskDecoder
from sam2.modeling.sam.prompt_encoder import PromptEncoder
from sam2.modeling.sam.transformer import TwoWayTransformer
from sam2.modeling.sam2_utils import get_1d_sine_pe, MLP, select_closest_cond_frames

# a large negative value as a placeholder score for missing objects
NO_OBJ_SCORE = -1024.0


class SAM2Base(torch.nn.Module):
    def __init__(
        self,
        image_encoder,
        memory_attention,
        memory_encoder,
        num_maskmem=7,  # default 1 input frame + 6 previous frames
        image_size=512,
        backbone_stride=16,  # stride of the image backbone output
        sigmoid_scale_for_mem_enc=1.0,  # scale factor for mask sigmoid prob
        sigmoid_bias_for_mem_enc=0.0,  # bias factor for mask sigmoid prob
        # During evaluation, whether to binarize the sigmoid mask logits on interacted frames with clicks
        binarize_mask_from_pts_for_mem_enc=False,
        use_mask_input_as_output_without_sam=False,  # on frames with mask input, whether to directly output the input mask without using a SAM prompt encoder + mask decoder
        # The maximum number of conditioning frames to participate in the memory attention (-1 means no limit; if there are more conditioning frames than this limit,
        # we only cross-attend to the temporally closest `max_cond_frames_in_attn` conditioning frames in the encoder when tracking each frame). This gives the model
        # a temporal locality when handling a large number of annotated frames (since closer frames should be more important) and also avoids GPU OOM.
        max_cond_frames_in_attn=-1,
        # on the first frame, whether to directly add the no-memory embedding to the image feature
        # (instead of using the transformer encoder)
        directly_add_no_mem_embed=False,
        # whether to use high-resolution feature maps in the SAM mask decoder
        use_high_res_features_in_sam=False,
        # whether to output multiple (3) masks for the first click on initial conditioning frames
        multimask_output_in_sam=False,
        # the minimum and maximum number of clicks to use multimask_output_in_sam (only relevant when `multimask_output_in_sam=True`;
        # default is 1 for both, meaning that only the first click gives multimask output; also note that a box counts as two points)
        multimask_min_pt_num=1,
        multimask_max_pt_num=1,
        # whether to also use multimask output for tracking (not just for the first click on initial conditioning frames; only relevant when `multimask_output_in_sam=True`)
        multimask_output_for_tracking=False,
        # Whether to use multimask tokens for obj ptr; Only relevant when both
        # use_obj_ptrs_in_encoder=True and multimask_output_for_tracking=True
        use_multimask_token_for_obj_ptr: bool = False,
        # whether to use sigmoid to restrict ious prediction to [0-1]
        iou_prediction_use_sigmoid=False,
        # The memory bank's temporal stride during evaluation (i.e. the `r` parameter in XMem and Cutie; XMem and Cutie use r=5).
        # For r>1, the (self.num_maskmem - 1) non-conditioning memory frames consist of
        # (self.num_maskmem - 2) nearest frames from every r-th frames, plus the last frame.
        memory_temporal_stride_for_eval=1,
        # if `add_all_frames_to_correct_as_cond` is True, we also append to the conditioning frame list any frame that receives a later correction click
        # if `add_all_frames_to_correct_as_cond` is False, we conditioning frame list to only use those initial conditioning frames
        add_all_frames_to_correct_as_cond=False,
        # whether to apply non-overlapping constraints on the object masks in the memory encoder during evaluation (to avoid/alleviate superposing masks)
        non_overlap_masks_for_mem_enc=False,
        # whether to cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder
        use_obj_ptrs_in_encoder=False,
        # the maximum number of object pointers from other frames in encoder cross attention (only relevant when `use_obj_ptrs_in_encoder=True`)
        max_obj_ptrs_in_encoder=16,
        # whether to add temporal positional encoding to the object pointers in the encoder (only relevant when `use_obj_ptrs_in_encoder=True`)
        add_tpos_enc_to_obj_ptrs=True,
        # whether to add an extra linear projection layer for the temporal positional encoding in the object pointers to avoid potential interference
        # with spatial positional encoding (only relevant when both `use_obj_ptrs_in_encoder=True` and `add_tpos_enc_to_obj_ptrs=True`)
        proj_tpos_enc_in_obj_ptrs=False,
        # whether to only attend to object pointers in the past (before the current frame) in the encoder during evaluation
        # (only relevant when `use_obj_ptrs_in_encoder=True`; this might avoid pointer information too far in the future to distract the initial tracking)
        only_obj_ptrs_in_the_past_for_eval=False,
        # Whether to predict if there is an object in the frame
        pred_obj_scores: bool = False,
        # Whether to use an MLP to predict object scores
        pred_obj_scores_mlp: bool = False,
        # Only relevant if pred_obj_scores=True and use_obj_ptrs_in_encoder=True;
        # Whether to have a fixed no obj pointer when there is no object present
        # or to use it as an additive embedding with obj_ptr produced by decoder
        fixed_no_obj_ptr: bool = False,
        # Soft no object, i.e. mix in no_obj_ptr softly,
        # hope to make recovery easier if there is a mistake and mitigate accumulation of errors
        soft_no_obj_ptr: bool = False,
        use_mlp_for_obj_ptr_proj: bool = False,
        # extra arguments used to construct the SAM mask decoder; if not None, it should be a dict of kwargs to be passed into `MaskDecoder` class.
        sam_mask_decoder_extra_args=None,
        compile_image_encoder: bool = False,
    ):
        super().__init__()

        # Part 1: the image backbone
        self.image_encoder = image_encoder
        # Use level 0, 1, 2 for high-res setting, or just level 2 for the default setting
        self.use_high_res_features_in_sam = use_high_res_features_in_sam
        self.num_feature_levels = 3 if use_high_res_features_in_sam else 1
        self.use_obj_ptrs_in_encoder = use_obj_ptrs_in_encoder
        self.max_obj_ptrs_in_encoder = max_obj_ptrs_in_encoder
        if use_obj_ptrs_in_encoder:
            # A conv layer to downsample the mask prompt to stride 4 (the same stride as
            # low-res SAM mask logits) and to change its scales from 0~1 to SAM logit scale,
            # so that it can be fed into the SAM mask decoder to generate a pointer.
            self.mask_downsample = torch.nn.Conv2d(1, 1, kernel_size=4, stride=4)
        self.add_tpos_enc_to_obj_ptrs = add_tpos_enc_to_obj_ptrs
        if proj_tpos_enc_in_obj_ptrs:
            assert add_tpos_enc_to_obj_ptrs  # these options need to be used together
        self.proj_tpos_enc_in_obj_ptrs = proj_tpos_enc_in_obj_ptrs
        self.only_obj_ptrs_in_the_past_for_eval = only_obj_ptrs_in_the_past_for_eval

        # Part 2: memory attention to condition current frame's visual features
        # with memories (and obj ptrs) from past frames
        self.memory_attention = memory_attention
        self.hidden_dim = memory_attention.d_model

        # Part 3: memory encoder for the previous frame's outputs
        self.memory_encoder = memory_encoder
        self.mem_dim = self.hidden_dim
        if hasattr(self.memory_encoder, "out_proj") and hasattr(
            self.memory_encoder.out_proj, "weight"
        ):
            # if there is compression of memories along channel dim
            self.mem_dim = self.memory_encoder.out_proj.weight.shape[0]
        self.num_maskmem = num_maskmem  # Number of memories accessible
        # Temporal encoding of the memories
        self.maskmem_tpos_enc = torch.nn.Parameter(
            torch.zeros(num_maskmem, 1, 1, self.mem_dim)
        )
        trunc_normal_(self.maskmem_tpos_enc, std=0.02)
        # a single token to indicate no memory embedding from previous frames
        self.no_mem_embed = torch.nn.Parameter(torch.zeros(1, 1, self.hidden_dim))
        self.no_mem_pos_enc = torch.nn.Parameter(torch.zeros(1, 1, self.hidden_dim))
        trunc_normal_(self.no_mem_embed, std=0.02)
        trunc_normal_(self.no_mem_pos_enc, std=0.02)
        self.directly_add_no_mem_embed = directly_add_no_mem_embed
        # Apply sigmoid to the output raw mask logits (to turn them from
        # range (-inf, +inf) to range (0, 1)) before feeding them into the memory encoder
        self.sigmoid_scale_for_mem_enc = sigmoid_scale_for_mem_enc
        self.sigmoid_bias_for_mem_enc = sigmoid_bias_for_mem_enc
        self.binarize_mask_from_pts_for_mem_enc = binarize_mask_from_pts_for_mem_enc
        self.non_overlap_masks_for_mem_enc = non_overlap_masks_for_mem_enc
        self.memory_temporal_stride_for_eval = memory_temporal_stride_for_eval
        # On frames with mask input, whether to directly output the input mask without
        # using a SAM prompt encoder + mask decoder
        self.use_mask_input_as_output_without_sam = use_mask_input_as_output_without_sam
        self.multimask_output_in_sam = multimask_output_in_sam
        self.multimask_min_pt_num = multimask_min_pt_num
        self.multimask_max_pt_num = multimask_max_pt_num
        self.multimask_output_for_tracking = multimask_output_for_tracking
        self.use_multimask_token_for_obj_ptr = use_multimask_token_for_obj_ptr
        self.iou_prediction_use_sigmoid = iou_prediction_use_sigmoid

        # Part 4: SAM-style prompt encoder (for both mask and point inputs)
        # and SAM-style mask decoder for the final mask output
        self.image_size = image_size
        self.backbone_stride = backbone_stride
        self.sam_mask_decoder_extra_args = sam_mask_decoder_extra_args
        self.pred_obj_scores = pred_obj_scores
        self.pred_obj_scores_mlp = pred_obj_scores_mlp
        self.fixed_no_obj_ptr = fixed_no_obj_ptr
        self.soft_no_obj_ptr = soft_no_obj_ptr
        if self.fixed_no_obj_ptr:
            assert self.pred_obj_scores
            assert self.use_obj_ptrs_in_encoder
        if self.pred_obj_scores and self.use_obj_ptrs_in_encoder:
            self.no_obj_ptr = torch.nn.Parameter(torch.zeros(1, self.hidden_dim))
            trunc_normal_(self.no_obj_ptr, std=0.02)
        self.use_mlp_for_obj_ptr_proj = use_mlp_for_obj_ptr_proj

        self._build_sam_heads()
        self.add_all_frames_to_correct_as_cond = add_all_frames_to_correct_as_cond
        self.max_cond_frames_in_attn = max_cond_frames_in_attn

        # Model compilation
        if compile_image_encoder:
            # Compile the forward function (not the full module) to allow loading checkpoints.
            print(
                "Image encoder compilation is enabled. First forward pass will be slow."
            )
            self.image_encoder.forward = torch.compile(
                self.image_encoder.forward,
                mode="max-autotune",
                fullgraph=True,
                dynamic=False,
            )

    @property
    def device(self):
        return next(self.parameters()).device

    def forward(self, *args, **kwargs):
        raise NotImplementedError(
            "Please use the corresponding methods in SAM2VideoPredictor for inference."
            "See notebooks/video_predictor_example.ipynb for an example."
        )

    def _build_sam_heads(self):
        """Build SAM-style prompt encoder and mask decoder."""
        self.sam_prompt_embed_dim = self.hidden_dim
        self.sam_image_embedding_size = self.image_size // self.backbone_stride

        # build PromptEncoder and MaskDecoder from SAM
        # (their hyperparameters like `mask_in_chans=16` are from SAM code)
        self.sam_prompt_encoder = PromptEncoder(
            embed_dim=self.sam_prompt_embed_dim,
            image_embedding_size=(
                self.sam_image_embedding_size,
                self.sam_image_embedding_size,
            ),
            input_image_size=(self.image_size, self.image_size),
            mask_in_chans=16,
        )
        self.sam_mask_decoder = MaskDecoder(
            num_multimask_outputs=3,
            transformer=TwoWayTransformer(
                depth=2,
                embedding_dim=self.sam_prompt_embed_dim,
                mlp_dim=2048,
                num_heads=8,
            ),
            transformer_dim=self.sam_prompt_embed_dim,
            iou_head_depth=3,
            iou_head_hidden_dim=256,
            use_high_res_features=self.use_high_res_features_in_sam,
            iou_prediction_use_sigmoid=self.iou_prediction_use_sigmoid,
            pred_obj_scores=self.pred_obj_scores,
            pred_obj_scores_mlp=self.pred_obj_scores_mlp,
            use_multimask_token_for_obj_ptr=self.use_multimask_token_for_obj_ptr,
            **(self.sam_mask_decoder_extra_args or {}),
        )
        if self.use_obj_ptrs_in_encoder:
            # a linear projection on SAM output tokens to turn them into object pointers
            self.obj_ptr_proj = torch.nn.Linear(self.hidden_dim, self.hidden_dim)
            if self.use_mlp_for_obj_ptr_proj:
                self.obj_ptr_proj = MLP(
                    self.hidden_dim, self.hidden_dim, self.hidden_dim, 3
                )
        else:
            self.obj_ptr_proj = torch.nn.Identity()
        if self.proj_tpos_enc_in_obj_ptrs:
            # a linear projection on temporal positional encoding in object pointers to
            # avoid potential interference with spatial positional encoding
            self.obj_ptr_tpos_proj = torch.nn.Linear(self.hidden_dim, self.mem_dim)
        else:
            self.obj_ptr_tpos_proj = torch.nn.Identity()

    def _forward_sam_heads(
        self,
        backbone_features,
        point_inputs=None,
        mask_inputs=None,
        high_res_features=None,
        multimask_output=False,
    ):
        """
        Forward SAM prompt encoders and mask heads.

        Inputs:
        - backbone_features: image features of [B, C, H, W] shape
        - point_inputs: a dictionary with "point_coords" and "point_labels", where
          1) "point_coords" has [B, P, 2] shape and float32 dtype and contains the
             absolute pixel-unit coordinate in (x, y) format of the P input points
          2) "point_labels" has shape [B, P] and int32 dtype, where 1 means
             positive clicks, 0 means negative clicks, and -1 means padding
        - mask_inputs: a mask of [B, 1, H*16, W*16] shape, float or bool, with the
          same spatial size as the image.
        - high_res_features: either 1) None or 2) or a list of length 2 containing
          two feature maps of [B, C, 4*H, 4*W] and [B, C, 2*H, 2*W] shapes respectively,
          which will be used as high-resolution feature maps for SAM decoder.
        - multimask_output: if it's True, we output 3 candidate masks and their 3
          corresponding IoU estimates, and if it's False, we output only 1 mask and
          its corresponding IoU estimate.

        Outputs:
        - low_res_multimasks: [B, M, H*4, W*4] shape (where M = 3 if
          `multimask_output=True` and M = 1 if `multimask_output=False`), the SAM
          output mask logits (before sigmoid) for the low-resolution masks, with 4x
          the resolution (1/4 stride) of the input backbone_features.
        - high_res_multimasks: [B, M, H*16, W*16] shape (where M = 3
          if `multimask_output=True` and M = 1 if `multimask_output=False`),
          upsampled from the low-resolution masks, with shape size as the image
          (stride is 1 pixel).
        - ious, [B, M] shape, where (where M = 3 if `multimask_output=True` and M = 1
          if `multimask_output=False`), the estimated IoU of each output mask.
        - low_res_masks: [B, 1, H*4, W*4] shape, the best mask in `low_res_multimasks`.
          If `multimask_output=True`, it's the mask with the highest IoU estimate.
          If `multimask_output=False`, it's the same as `low_res_multimasks`.
        - high_res_masks: [B, 1, H*16, W*16] shape, the best mask in `high_res_multimasks`.
          If `multimask_output=True`, it's the mask with the highest IoU estimate.
          If `multimask_output=False`, it's the same as `high_res_multimasks`.
        - obj_ptr: [B, C] shape, the object pointer vector for the output mask, extracted
          based on the output token from the SAM mask decoder.
        """
        B = backbone_features.size(0)
        device = backbone_features.device
        assert backbone_features.size(1) == self.sam_prompt_embed_dim
        assert backbone_features.size(2) == self.sam_image_embedding_size
        assert backbone_features.size(3) == self.sam_image_embedding_size

        # a) Handle point prompts
        if point_inputs is not None:
            sam_point_coords = point_inputs["point_coords"]
            sam_point_labels = point_inputs["point_labels"]
            assert sam_point_coords.size(0) == B and sam_point_labels.size(0) == B
        else:
            # If no points are provide, pad with an empty point (with label -1)
            sam_point_coords = torch.zeros(B, 1, 2, device=device)
            sam_point_labels = -torch.ones(B, 1, dtype=torch.int32, device=device)

        # b) Handle mask prompts
        if mask_inputs is not None:
            # If mask_inputs is provided, downsize it into low-res mask input if needed
            # and feed it as a dense mask prompt into the SAM mask encoder
            assert len(mask_inputs.shape) == 4 and mask_inputs.shape[:2] == (B, 1)
            if mask_inputs.shape[-2:] != self.sam_prompt_encoder.mask_input_size:
                sam_mask_prompt = F.interpolate(
                    mask_inputs.float(),
                    size=self.sam_prompt_encoder.mask_input_size,
                    align_corners=False,
                    mode="bilinear",
                    antialias=True,  # use antialias for downsampling
                )
            else:
                sam_mask_prompt = mask_inputs
        else:
            # Otherwise, simply feed None (and SAM's prompt encoder will add
            # a learned `no_mask_embed` to indicate no mask input in this case).
            sam_mask_prompt = None

        sparse_embeddings, dense_embeddings = self.sam_prompt_encoder(
            points=(sam_point_coords, sam_point_labels),
            boxes=None,
            masks=sam_mask_prompt,
        )
        (
            low_res_multimasks,
            ious,
            sam_output_tokens,
            object_score_logits,
        ) = self.sam_mask_decoder(
            image_embeddings=backbone_features,
            image_pe=self.sam_prompt_encoder.get_dense_pe(),
            sparse_prompt_embeddings=sparse_embeddings,
            dense_prompt_embeddings=dense_embeddings,
            multimask_output=multimask_output,
            repeat_image=False,  # the image is already batched
            high_res_features=high_res_features,
        )
        if self.pred_obj_scores:
            is_obj_appearing = object_score_logits > 0

            # Mask used for spatial memories is always a *hard* choice between obj and no obj,
            # consistent with the actual mask prediction
            low_res_multimasks = torch.where(
                is_obj_appearing[:, None, None],
                low_res_multimasks,
                NO_OBJ_SCORE,
            )

        # convert masks from possibly bfloat16 (or float16) to float32
        # (older PyTorch versions before 2.1 don't support `interpolate` on bf16)
        low_res_multimasks = low_res_multimasks.float()
        high_res_multimasks = F.interpolate(
            low_res_multimasks,
            size=(self.image_size, self.image_size),
            mode="bilinear",
            align_corners=False,
        )

        sam_output_token = sam_output_tokens[:, 0]
        if multimask_output:
            # take the best mask prediction (with the highest IoU estimation)
            best_iou_inds = torch.argmax(ious, dim=-1)
            batch_inds = torch.arange(B, device=device)
            low_res_masks = low_res_multimasks[batch_inds, best_iou_inds].unsqueeze(1)
            high_res_masks = high_res_multimasks[batch_inds, best_iou_inds].unsqueeze(1)
            if sam_output_tokens.size(1) > 1:
                sam_output_token = sam_output_tokens[batch_inds, best_iou_inds]
        else:
            low_res_masks, high_res_masks = low_res_multimasks, high_res_multimasks

        # Extract object pointer from the SAM output token (with occlusion handling)
        obj_ptr = self.obj_ptr_proj(sam_output_token)
        if self.pred_obj_scores:
            # Allow *soft* no obj ptr, unlike for masks
            if self.soft_no_obj_ptr:
                # Only hard possible with gt
                assert not self.teacher_force_obj_scores_for_mem
                lambda_is_obj_appearing = object_score_logits.sigmoid()
            else:
                lambda_is_obj_appearing = is_obj_appearing.float()

            if self.fixed_no_obj_ptr:
                obj_ptr = lambda_is_obj_appearing * obj_ptr
            obj_ptr = obj_ptr + (1 - lambda_is_obj_appearing) * self.no_obj_ptr

        return (
            low_res_multimasks,
            high_res_multimasks,
            ious,
            low_res_masks,
            high_res_masks,
            obj_ptr,
            object_score_logits,
        )

    def _use_mask_as_output(self, backbone_features, high_res_features, mask_inputs):
        """
        Directly turn binary `mask_inputs` into a output mask logits without using SAM.
        (same input and output shapes as in _forward_sam_heads above).
        """
        # Use -10/+10 as logits for neg/pos pixels (very close to 0/1 in prob after sigmoid).
        out_scale, out_bias = 20.0, -10.0  # sigmoid(-10.0)=4.5398e-05
        mask_inputs_float = mask_inputs.float()
        high_res_masks = mask_inputs_float * out_scale + out_bias
        low_res_masks = F.interpolate(
            high_res_masks,
            size=(high_res_masks.size(-2) // 4, high_res_masks.size(-1) // 4),
            align_corners=False,
            mode="bilinear",
            antialias=True,  # use antialias for downsampling
        )
        # a dummy IoU prediction of all 1's under mask input
        ious = mask_inputs.new_ones(mask_inputs.size(0), 1).float()
        if not self.use_obj_ptrs_in_encoder:
            # all zeros as a dummy object pointer (of shape [B, C])
            obj_ptr = torch.zeros(
                mask_inputs.size(0), self.hidden_dim, device=mask_inputs.device
            )
        else:
            # produce an object pointer using the SAM decoder from the mask input
            _, _, _, _, _, obj_ptr, _ = self._forward_sam_heads(
                backbone_features=backbone_features,
                mask_inputs=self.mask_downsample(mask_inputs_float),
                high_res_features=high_res_features,
            )
        # In this method, we are treating mask_input as output, e.g. using it directly to create spatial mem;
        # Below, we follow the same design axiom to use mask_input to decide if obj appears or not instead of relying
        # on the object_scores from the SAM decoder.
        is_obj_appearing = torch.any(mask_inputs.flatten(1).float() > 0.0, dim=1)
        is_obj_appearing = is_obj_appearing[..., None]
        lambda_is_obj_appearing = is_obj_appearing.float()
        object_score_logits = out_scale * lambda_is_obj_appearing + out_bias
        if self.pred_obj_scores:
            if self.fixed_no_obj_ptr:
                obj_ptr = lambda_is_obj_appearing * obj_ptr
            obj_ptr = obj_ptr + (1 - lambda_is_obj_appearing) * self.no_obj_ptr

        return (
            low_res_masks,
            high_res_masks,
            ious,
            low_res_masks,
            high_res_masks,
            obj_ptr,
            object_score_logits,
        )

    def forward_image(self, img_batch: torch.Tensor):
        """Get the image feature on the input batch."""
        backbone_out = self.image_encoder(img_batch)
        if self.use_high_res_features_in_sam:
            # precompute projected level 0 and level 1 features in SAM decoder
            # to avoid running it again on every SAM click
            backbone_out["backbone_fpn"][0] = self.sam_mask_decoder.conv_s0(
                backbone_out["backbone_fpn"][0]
            )
            backbone_out["backbone_fpn"][1] = self.sam_mask_decoder.conv_s1(
                backbone_out["backbone_fpn"][1]
            )
        return backbone_out

    def _prepare_backbone_features(self, backbone_out):
        """Prepare and flatten visual features."""
        backbone_out = backbone_out.copy()
        assert len(backbone_out["backbone_fpn"]) == len(backbone_out["vision_pos_enc"])
        assert len(backbone_out["backbone_fpn"]) >= self.num_feature_levels

        feature_maps = backbone_out["backbone_fpn"][-self.num_feature_levels :]
        vision_pos_embeds = backbone_out["vision_pos_enc"][-self.num_feature_levels :]

        feat_sizes = [(x.shape[-2], x.shape[-1]) for x in vision_pos_embeds]
        # flatten NxCxHxW to HWxNxC
        vision_feats = [x.flatten(2).permute(2, 0, 1) for x in feature_maps]
        vision_pos_embeds = [x.flatten(2).permute(2, 0, 1) for x in vision_pos_embeds]

        return backbone_out, vision_feats, vision_pos_embeds, feat_sizes

    def _prepare_memory_conditioned_features(
        self,
        frame_idx,
        is_init_cond_frame,
        current_vision_feats,
        current_vision_pos_embeds,
        feat_sizes,
        output_dict,
        num_frames,
        track_in_reverse=False,  # tracking in reverse time order (for demo usage)
    ):
        """Fuse the current frame's visual feature map with previous memory."""
        B = current_vision_feats[-1].size(1)  # batch size on this frame
        C = self.hidden_dim
        H, W = feat_sizes[-1]  # top-level (lowest-resolution) feature size
        device = current_vision_feats[-1].device
        # The case of `self.num_maskmem == 0` below is primarily used for reproducing SAM on images.
        # In this case, we skip the fusion with any memory.
        if self.num_maskmem == 0:  # Disable memory and skip fusion
            pix_feat = current_vision_feats[-1].permute(1, 2, 0).view(B, C, H, W)
            return pix_feat

        num_obj_ptr_tokens = 0
        # Step 1: condition the visual features of the current frame on previous memories
        if not is_init_cond_frame:
            # Retrieve the memories encoded with the maskmem backbone
            to_cat_memory, to_cat_memory_pos_embed = [], []
            # Add conditioning frames's output first (all cond frames have t_pos=0 for
            # when getting temporal positional embedding below)
            assert len(output_dict["cond_frame_outputs"]) > 0
            # Select a maximum number of temporally closest cond frames for cross attention
            cond_outputs = output_dict["cond_frame_outputs"]
            selected_cond_outputs, unselected_cond_outputs = select_closest_cond_frames(
                frame_idx, cond_outputs, self.max_cond_frames_in_attn
            )
            t_pos_and_prevs = [(0, out) for out in selected_cond_outputs.values()]
            # Add last (self.num_maskmem - 1) frames before current frame for non-conditioning memory
            # the earliest one has t_pos=1 and the latest one has t_pos=self.num_maskmem-1
            # We also allow taking the memory frame non-consecutively (with r>1), in which case
            # we take (self.num_maskmem - 2) frames among every r-th frames plus the last frame.
            r = self.memory_temporal_stride_for_eval
            for t_pos in range(1, self.num_maskmem):
                t_rel = self.num_maskmem - t_pos  # how many frames before current frame
                if t_rel == 1:
                    # for t_rel == 1, we take the last frame (regardless of r)
                    if not track_in_reverse:
                        # the frame immediately before this frame (i.e. frame_idx - 1)
                        prev_frame_idx = frame_idx - t_rel
                    else:
                        # the frame immediately after this frame (i.e. frame_idx + 1)
                        prev_frame_idx = frame_idx + t_rel
                else:
                    # for t_rel >= 2, we take the memory frame from every r-th frames
                    if not track_in_reverse:
                        # first find the nearest frame among every r-th frames before this frame
                        # for r=1, this would be (frame_idx - 2)
                        prev_frame_idx = ((frame_idx - 2) // r) * r
                        # then seek further among every r-th frames
                        prev_frame_idx = prev_frame_idx - (t_rel - 2) * r
                    else:
                        # first find the nearest frame among every r-th frames after this frame
                        # for r=1, this would be (frame_idx + 2)
                        prev_frame_idx = -(-(frame_idx + 2) // r) * r
                        # then seek further among every r-th frames
                        prev_frame_idx = prev_frame_idx + (t_rel - 2) * r
                out = output_dict["non_cond_frame_outputs"].get(prev_frame_idx, None)
                if out is None:
                    # If an unselected conditioning frame is among the last (self.num_maskmem - 1)
                    # frames, we still attend to it as if it's a non-conditioning frame.
                    out = unselected_cond_outputs.get(prev_frame_idx, None)
                t_pos_and_prevs.append((t_pos, out))

            for t_pos, prev in t_pos_and_prevs:
                if prev is None:
                    continue  # skip padding frames
                # "maskmem_features" might have been offloaded to CPU in demo use cases,
                # so we load it back to GPU (it's a no-op if it's already on GPU).
                feats = prev["maskmem_features"].cuda(non_blocking=True)
                to_cat_memory.append(feats.flatten(2).permute(2, 0, 1))
                # Spatial positional encoding (it might have been offloaded to CPU in eval)
                maskmem_enc = prev["maskmem_pos_enc"][-1].cuda()
                maskmem_enc = maskmem_enc.flatten(2).permute(2, 0, 1)
                # Temporal positional encoding
                maskmem_enc = (
                    maskmem_enc + self.maskmem_tpos_enc[self.num_maskmem - t_pos - 1]
                )
                to_cat_memory_pos_embed.append(maskmem_enc)

            # Construct the list of past object pointers
            if self.use_obj_ptrs_in_encoder:
                max_obj_ptrs_in_encoder = min(num_frames, self.max_obj_ptrs_in_encoder)
                # First add those object pointers from selected conditioning frames
                # (optionally, only include object pointers in the past during evaluation)
                if not self.training and self.only_obj_ptrs_in_the_past_for_eval:
                    ptr_cond_outputs = {
                        t: out
                        for t, out in selected_cond_outputs.items()
                        if (t >= frame_idx if track_in_reverse else t <= frame_idx)
                    }
                else:
                    ptr_cond_outputs = selected_cond_outputs
                pos_and_ptrs = [
                    # Temporal pos encoding contains how far away each pointer is from current frame
                    (abs(frame_idx - t), out["obj_ptr"])
                    for t, out in ptr_cond_outputs.items()
                ]
                # Add up to (max_obj_ptrs_in_encoder - 1) non-conditioning frames before current frame
                for t_diff in range(1, max_obj_ptrs_in_encoder):
                    t = frame_idx + t_diff if track_in_reverse else frame_idx - t_diff
                    if t < 0 or (num_frames is not None and t >= num_frames):
                        break
                    out = output_dict["non_cond_frame_outputs"].get(
                        t, unselected_cond_outputs.get(t, None)
                    )
                    if out is not None:
                        pos_and_ptrs.append((t_diff, out["obj_ptr"]))
                # If we have at least one object pointer, add them to the across attention
                if len(pos_and_ptrs) > 0:
                    pos_list, ptrs_list = zip(*pos_and_ptrs)
                    # stack object pointers along dim=0 into [ptr_seq_len, B, C] shape
                    obj_ptrs = torch.stack(ptrs_list, dim=0)
                    # a temporal positional embedding based on how far each object pointer is from
                    # the current frame (sine embedding normalized by the max pointer num).
                    if self.add_tpos_enc_to_obj_ptrs:
                        t_diff_max = max_obj_ptrs_in_encoder - 1
                        tpos_dim = C if self.proj_tpos_enc_in_obj_ptrs else self.mem_dim
                        obj_pos = torch.tensor(pos_list, device=device)
                        obj_pos = get_1d_sine_pe(obj_pos / t_diff_max, dim=tpos_dim)
                        obj_pos = self.obj_ptr_tpos_proj(obj_pos)
                        obj_pos = obj_pos.unsqueeze(1).expand(-1, B, self.mem_dim)
                    else:
                        obj_pos = obj_ptrs.new_zeros(len(pos_list), B, self.mem_dim)
                    if self.mem_dim < C:
                        # split a pointer into (C // self.mem_dim) tokens for self.mem_dim < C
                        obj_ptrs = obj_ptrs.reshape(
                            -1, B, C // self.mem_dim, self.mem_dim
                        )
                        obj_ptrs = obj_ptrs.permute(0, 2, 1, 3).flatten(0, 1)
                        obj_pos = obj_pos.repeat_interleave(C // self.mem_dim, dim=0)
                    to_cat_memory.append(obj_ptrs)
                    to_cat_memory_pos_embed.append(obj_pos)
                    num_obj_ptr_tokens = obj_ptrs.shape[0]
                else:
                    num_obj_ptr_tokens = 0
        else:
            # for initial conditioning frames, encode them without using any previous memory
            if self.directly_add_no_mem_embed:
                # directly add no-mem embedding (instead of using the transformer encoder)
                pix_feat_with_mem = current_vision_feats[-1] + self.no_mem_embed
                pix_feat_with_mem = pix_feat_with_mem.permute(1, 2, 0).view(B, C, H, W)
                return pix_feat_with_mem

            # Use a dummy token on the first frame (to avoid emtpy memory input to tranformer encoder)
            to_cat_memory = [self.no_mem_embed.expand(1, B, self.mem_dim)]
            to_cat_memory_pos_embed = [self.no_mem_pos_enc.expand(1, B, self.mem_dim)]

        # Step 2: Concatenate the memories and forward through the transformer encoder
        memory = torch.cat(to_cat_memory, dim=0)
        memory_pos_embed = torch.cat(to_cat_memory_pos_embed, dim=0)

        pix_feat_with_mem = self.memory_attention(
            curr=current_vision_feats,
            curr_pos=current_vision_pos_embeds,
            memory=memory,
            memory_pos=memory_pos_embed,
            num_obj_ptr_tokens=num_obj_ptr_tokens,
        )
        # reshape the output (HW)BC => BCHW
        pix_feat_with_mem = pix_feat_with_mem.permute(1, 2, 0).view(B, C, H, W)
        return pix_feat_with_mem

    def _encode_new_memory(
        self,
        current_vision_feats,
        feat_sizes,
        pred_masks_high_res,
        is_mask_from_pts,
    ):
        """Encode the current image and its prediction into a memory feature."""
        B = current_vision_feats[-1].size(1)  # batch size on this frame
        C = self.hidden_dim
        H, W = feat_sizes[-1]  # top-level (lowest-resolution) feature size
        # top-level feature, (HW)BC => BCHW
        pix_feat = current_vision_feats[-1].permute(1, 2, 0).view(B, C, H, W)
        if self.non_overlap_masks_for_mem_enc and not self.training:
            # optionally, apply non-overlapping constraints to the masks (it's applied
            # in the batch dimension and should only be used during eval, where all
            # the objects come from the same video under batch size 1).
            pred_masks_high_res = self._apply_non_overlapping_constraints(
                pred_masks_high_res
            )
        # scale the raw mask logits with a temperature before applying sigmoid
        binarize = self.binarize_mask_from_pts_for_mem_enc and is_mask_from_pts
        if binarize and not self.training:
            mask_for_mem = (pred_masks_high_res > 0).float()
        else:
            # apply sigmoid on the raw mask logits to turn them into range (0, 1)
            mask_for_mem = torch.sigmoid(pred_masks_high_res)
        # apply scale and bias terms to the sigmoid probabilities
        if self.sigmoid_scale_for_mem_enc != 1.0:
            mask_for_mem = mask_for_mem * self.sigmoid_scale_for_mem_enc
        if self.sigmoid_bias_for_mem_enc != 0.0:
            mask_for_mem = mask_for_mem + self.sigmoid_bias_for_mem_enc
        maskmem_out = self.memory_encoder(
            pix_feat, mask_for_mem, skip_mask_sigmoid=True  # sigmoid already applied
        )
        maskmem_features = maskmem_out["vision_features"]
        maskmem_pos_enc = maskmem_out["vision_pos_enc"]

        return maskmem_features, maskmem_pos_enc

    def track_step(
        self,
        frame_idx,
        is_init_cond_frame,
        current_vision_feats,
        current_vision_pos_embeds,
        feat_sizes,
        point_inputs,
        mask_inputs,
        output_dict,
        num_frames,
        track_in_reverse=False,  # tracking in reverse time order (for demo usage)
        # Whether to run the memory encoder on the predicted masks. Sometimes we might want
        # to skip the memory encoder with `run_mem_encoder=False`. For example,
        # in demo we might call `track_step` multiple times for each user click,
        # and only encode the memory when the user finalizes their clicks. And in ablation
        # settings like SAM training on static images, we don't need the memory encoder.
        run_mem_encoder=True,
        # The previously predicted SAM mask logits (which can be fed together with new clicks in demo).
        prev_sam_mask_logits=None,
    ):
        current_out = {"point_inputs": point_inputs, "mask_inputs": mask_inputs}
        # High-resolution feature maps for the SAM head, reshape (HW)BC => BCHW
        if len(current_vision_feats) > 1:
            high_res_features = [
                x.permute(1, 2, 0).view(x.size(1), x.size(2), *s)
                for x, s in zip(current_vision_feats[:-1], feat_sizes[:-1])
            ]
        else:
            high_res_features = None
        if mask_inputs is not None and self.use_mask_input_as_output_without_sam:
            # When use_mask_input_as_output_without_sam=True, we directly output the mask input
            # (see it as a GT mask) without using a SAM prompt encoder + mask decoder.
            pix_feat = current_vision_feats[-1].permute(1, 2, 0)
            pix_feat = pix_feat.view(-1, self.hidden_dim, *feat_sizes[-1])
            sam_outputs = self._use_mask_as_output(
                pix_feat, high_res_features, mask_inputs
            )
        else:
            # fused the visual feature with previous memory features in the memory bank
            pix_feat_with_mem = self._prepare_memory_conditioned_features(
                frame_idx=frame_idx,
                is_init_cond_frame=is_init_cond_frame,
                current_vision_feats=current_vision_feats[-1:],
                current_vision_pos_embeds=current_vision_pos_embeds[-1:],
                feat_sizes=feat_sizes[-1:],
                output_dict=output_dict,
                num_frames=num_frames,
                track_in_reverse=track_in_reverse,
            )
            # apply SAM-style segmentation head
            # here we might feed previously predicted low-res SAM mask logits into the SAM mask decoder,
            # e.g. in demo where such logits come from earlier interaction instead of correction sampling
            # (in this case, any `mask_inputs` shouldn't reach here as they are sent to _use_mask_as_output instead)
            if prev_sam_mask_logits is not None:
                assert point_inputs is not None and mask_inputs is None
                mask_inputs = prev_sam_mask_logits
            multimask_output = self._use_multimask(is_init_cond_frame, point_inputs)
            sam_outputs = self._forward_sam_heads(
                backbone_features=pix_feat_with_mem,
                point_inputs=point_inputs,
                mask_inputs=mask_inputs,
                high_res_features=high_res_features,
                multimask_output=multimask_output,
            )
        (
            _,
            _,
            _,
            low_res_masks,
            high_res_masks,
            obj_ptr,
            _,
        ) = sam_outputs

        current_out["pred_masks"] = low_res_masks
        current_out["pred_masks_high_res"] = high_res_masks
        current_out["obj_ptr"] = obj_ptr

        # Finally run the memory encoder on the predicted mask to encode
        # it into a new memory feature (that can be used in future frames)
        if run_mem_encoder and self.num_maskmem > 0:
            high_res_masks_for_mem_enc = high_res_masks
            maskmem_features, maskmem_pos_enc = self._encode_new_memory(
                current_vision_feats=current_vision_feats,
                feat_sizes=feat_sizes,
                pred_masks_high_res=high_res_masks_for_mem_enc,
                is_mask_from_pts=(point_inputs is not None),
            )
            current_out["maskmem_features"] = maskmem_features
            current_out["maskmem_pos_enc"] = maskmem_pos_enc
        else:
            current_out["maskmem_features"] = None
            current_out["maskmem_pos_enc"] = None

        return current_out

    def _use_multimask(self, is_init_cond_frame, point_inputs):
        """Whether to use multimask output in the SAM head."""
        num_pts = 0 if point_inputs is None else point_inputs["point_labels"].size(1)
        multimask_output = (
            self.multimask_output_in_sam
            and (is_init_cond_frame or self.multimask_output_for_tracking)
            and (self.multimask_min_pt_num <= num_pts <= self.multimask_max_pt_num)
        )
        return multimask_output

    def _apply_non_overlapping_constraints(self, pred_masks):
        """
        Apply non-overlapping constraints to the object scores in pred_masks. Here we
        keep only the highest scoring object at each spatial location in pred_masks.
        """
        batch_size = pred_masks.size(0)
        if batch_size == 1:
            return pred_masks

        device = pred_masks.device
        # "max_obj_inds": object index of the object with the highest score at each location
        max_obj_inds = torch.argmax(pred_masks, dim=0, keepdim=True)
        # "batch_obj_inds": object index of each object slice (along dim 0) in `pred_masks`
        batch_obj_inds = torch.arange(batch_size, device=device)[:, None, None, None]
        keep = max_obj_inds == batch_obj_inds
        # suppress overlapping regions' scores below -10.0 so that the foreground regions
        # don't overlap (here sigmoid(-10.0)=4.5398e-05)
        pred_masks = torch.where(keep, pred_masks, torch.clamp(pred_masks, max=-10.0))
        return pred_masks