File size: 16,490 Bytes
cfa5142
0f36b51
cfa5142
6df697d
41938cd
cfa5142
 
 
 
b0345e8
cfa5142
 
d3e66e1
cfa5142
 
 
e56e825
6df697d
cfa5142
 
 
6df697d
 
 
cfa5142
e56e825
 
5f8864d
cfa5142
c5a4e30
cfa5142
 
 
 
 
5f8864d
cfa5142
 
 
 
 
 
 
 
 
6df697d
cfa5142
 
 
e56e825
 
cfa5142
 
60434a4
2878798
cfa5142
0f36b51
6df697d
0f36b51
6df697d
 
 
 
 
cfa5142
 
6df697d
 
 
b0345e8
cfa5142
0f36b51
 
2878798
 
0f36b51
 
 
 
 
 
 
 
cfa5142
 
 
 
 
 
 
0f36b51
 
8d52a7d
2878798
e56e825
 
 
 
6df697d
 
 
 
2878798
 
 
6df697d
2878798
6df697d
2878798
cfa5142
2c719e3
 
 
6df697d
 
 
2c719e3
 
 
 
87a101a
 
 
5f8864d
0f36b51
87a101a
cfa5142
2c719e3
 
 
41938cd
 
 
2c719e3
6df697d
 
 
2c719e3
 
cfa5142
87a101a
 
 
41938cd
 
87a101a
 
 
e56e825
 
2c719e3
 
e56e825
 
 
 
 
 
 
 
 
2878798
 
 
e56e825
 
 
2878798
6df697d
2878798
 
 
 
 
6df697d
2878798
 
e56e825
 
2878798
6df697d
2878798
e56e825
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f36b51
2878798
6df697d
 
 
 
 
2878798
6df697d
 
 
 
e56e825
 
 
 
 
 
6df697d
 
 
 
e56e825
 
 
 
 
 
 
 
 
 
 
 
 
6df697d
 
 
 
 
 
e56e825
6df697d
2878798
e56e825
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
075107e
e56e825
2c719e3
 
 
 
 
 
 
 
 
 
0f36b51
002d880
 
 
 
 
 
 
 
 
 
 
 
 
 
2c719e3
 
 
 
 
 
002d880
2c719e3
 
 
 
16bf670
41938cd
 
ebdd2a9
41938cd
6df697d
2c719e3
16bf670
2c719e3
 
6df697d
 
 
002d880
2c719e3
16bf670
8d52a7d
2c719e3
 
 
0f36b51
cfa5142
0f36b51
16bf670
 
 
 
 
 
ebdd2a9
 
002d880
16bf670
6df697d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
from sam2.automatic_mask_generator import SAM2AutomaticMaskGenerator
from sam2.build_sam import build_sam2, build_sam2_video_predictor
from sam2.sam2_image_predictor import SAM2ImagePredictor
from sam2.sam2_video_predictor import SAM2VideoPredictor
from typing import Dict, List, Optional
import torch
import os
from datetime import datetime
import numpy as np
import gradio as gr

from modules.model_downloader import (
    AVAILABLE_MODELS, DEFAULT_MODEL_TYPE, OUTPUT_DIR,
    is_sam_exist,
    download_sam_model_url
)
from modules.paths import SAM2_CONFIGS_DIR, MODELS_DIR, TEMP_OUT_DIR, TEMP_DIR
from modules.constants import BOX_PROMPT_MODE, AUTOMATIC_MODE, COLOR_FILTER, PIXELIZE_FILTER
from modules.mask_utils import (
    save_psd_with_masks,
    create_mask_combined_images,
    create_mask_gallery,
    create_mask_pixelized_image,
    create_solid_color_mask_image
)
from modules.video_utils import get_frames_from_dir
from modules.utils import save_image
from modules.logger_util import get_logger

MODEL_CONFIGS = {
    "sam2_hiera_tiny": os.path.join(SAM2_CONFIGS_DIR, "sam2_hiera_t.yaml"),
    "sam2_hiera_small": os.path.join(SAM2_CONFIGS_DIR, "sam2_hiera_s.yaml"),
    "sam2_hiera_base_plus": os.path.join(SAM2_CONFIGS_DIR, "sam2_hiera_b+.yaml"),
    "sam2_hiera_large": os.path.join(SAM2_CONFIGS_DIR, "sam2_hiera_l.yaml"),
}
logger = get_logger()


class SamInference:
    def __init__(self,
                 model_dir: str = MODELS_DIR,
                 output_dir: str = OUTPUT_DIR
                 ):
        self.model = None
        self.available_models = list(AVAILABLE_MODELS.keys())
        self.current_model_type = DEFAULT_MODEL_TYPE
        self.model_dir = model_dir
        self.output_dir = output_dir
        self.model_path = os.path.join(self.model_dir, AVAILABLE_MODELS[DEFAULT_MODEL_TYPE][0])
        self.device = "cuda" if torch.cuda.is_available() else "cpu"
        self.dtype = torch.float16 if torch.cuda.is_available() else torch.float32
        self.mask_generator = None
        self.image_predictor = None
        self.video_predictor = None
        self.video_inference_state = None

    def load_model(self,
                   model_type: Optional[str] = None,
                   load_video_predictor: bool = False):
        if model_type is None:
            model_type = DEFAULT_MODEL_TYPE

        config = MODEL_CONFIGS[model_type]
        filename, url = AVAILABLE_MODELS[model_type]
        model_path = os.path.join(self.model_dir, filename)

        if not is_sam_exist(model_type):
            logger.info(f"No SAM2 model found, downloading {model_type} model...")
            download_sam_model_url(model_type)
        logger.info(f"Applying configs to {model_type} model..")

        if load_video_predictor:
            try:
                self.model = None
                self.video_predictor = build_sam2_video_predictor(
                    config_file=config,
                    ckpt_path=model_path,
                    device=self.device
                )
            except Exception as e:
                logger.exception("Error while loading SAM2 model for video predictor")
                raise f"Error while loading SAM2 model for video predictor!: {e}"

        try:
            self.model = build_sam2(
                config_file=config,
                ckpt_path=model_path,
                device=self.device
            )
        except Exception as e:
            logger.exception("Error while loading SAM2 model")
            raise f"Error while loading SAM2 model!: {e}"

    def init_video_inference_state(self,
                                   vid_input: str,
                                   model_type: Optional[str] = None):
        if model_type is None:
            model_type = self.current_model_type

        if self.video_predictor is None or model_type != self.current_model_type:
            self.current_model_type = model_type
            self.load_model(model_type=model_type, load_video_predictor=True)

        if self.video_inference_state is not None:
            self.video_predictor.reset_state(self.video_inference_state)
            self.video_inference_state = None

        self.video_inference_state = self.video_predictor.init_state(video_path=vid_input)

    def generate_mask(self,
                      image: np.ndarray,
                      model_type: str,
                      **params):
        if self.model is None or self.current_model_type != model_type:
            self.current_model_type = model_type
            self.load_model(model_type=model_type)
        self.mask_generator = SAM2AutomaticMaskGenerator(
            model=self.model,
            **params
        )
        try:
            generated_masks = self.mask_generator.generate(image)
        except Exception as e:
            logger.exception("Error while auto generating masks")
            raise f"Error while auto generating masks: str({e})"
        return generated_masks

    def predict_image(self,
                      image: np.ndarray,
                      model_type: str,
                      box: Optional[np.ndarray] = None,
                      point_coords: Optional[np.ndarray] = None,
                      point_labels: Optional[np.ndarray] = None,
                      **params):
        if self.model is None or self.current_model_type != model_type:
            self.current_model_type = model_type
            self.load_model(model_type=model_type)
        self.image_predictor = SAM2ImagePredictor(sam_model=self.model)
        self.image_predictor.set_image(image)

        try:
            masks, scores, logits = self.image_predictor.predict(
                box=box,
                point_coords=point_coords,
                point_labels=point_labels,
                multimask_output=params["multimask_output"],
            )
        except Exception as e:
            logger.exception(f"Error while predicting image with prompt: {str(e)}")
            raise RuntimeError(f"Error while predicting image with prompt: {str(e)}") from e
        return masks, scores, logits

    def add_prediction_to_frame(self,
                                frame_idx: int,
                                obj_id: int,
                                inference_state: Optional[Dict] = None,
                                points: Optional[np.ndarray] = None,
                                labels: Optional[np.ndarray] = None,
                                box: Optional[np.ndarray] = None):
        if (self.video_predictor is None or
                inference_state is None and self.video_inference_state is None):
            logger.exception("Error while predicting frame from video, load video predictor first")
            raise f"Error while predicting frame from video"

        if inference_state is None:
            inference_state = self.video_inference_state

        try:
            out_frame_idx, out_obj_ids, out_mask_logits = self.video_predictor.add_new_points_or_box(
                inference_state=inference_state,
                frame_idx=frame_idx,
                obj_id=obj_id,
                points=points,
                labels=labels,
                box=box
            )
        except Exception as e:
            logger.exception(f"Error while predicting frame with prompt: {str(e)}")
            raise RuntimeError(f"Failed to predicting frame with prompt: {str(e)}") from e

        return out_frame_idx, out_obj_ids, out_mask_logits

    def propagate_in_video(self,
                           inference_state: Optional[Dict] = None,):
        if inference_state is None and self.video_inference_state is None:
            logger.exception("Error while propagating in video, load video predictor first")
            raise f"Error while propagating in video"

        if inference_state is None:
            inference_state = self.video_inference_state

        video_segments = {}

        try:
            generator = self.video_predictor.propagate_in_video(
                inference_state=inference_state,
                start_frame_idx=0
            )
            cached_images = inference_state["images"]
            images = get_frames_from_dir(vid_dir=TEMP_DIR, as_numpy=True)

            with torch.autocast(device_type=self.device, dtype=torch.float16):
                for out_frame_idx, out_obj_ids, out_mask_logits in generator:
                    mask = (out_mask_logits[0] > 0.0).cpu().numpy()
                    video_segments[out_frame_idx] = {
                        "image": images[out_frame_idx],
                        "mask": mask
                    }
        except Exception as e:
            logger.exception(f"Error while propagating in video: {str(e)}")
            raise RuntimeError(f"Failed to propagate in video: {str(e)}") from e

        return video_segments

    def add_filter_to_preview(self,
                              image_prompt_input_data: Dict,
                              filter_mode: str,
                              frame_idx: int,
                              pixel_size: Optional[int] = None,
                              color_hex: Optional[str] = None,
                              ):
        if self.video_predictor is None or self.video_inference_state is None:
            logger.exception("Error while adding filter to preview, load video predictor first")
            raise f"Error while adding filter to preview"

        if not image_prompt_input_data["points"]:
            error_message = ("No prompt data provided. If this is an incorrect flag, "
                             "Please press the eraser button (on the image prompter) and add your prompts again.")
            logger.error(error_message)
            raise gr.Error(error_message, duration=20)

        image, prompt = image_prompt_input_data["image"], image_prompt_input_data["points"]
        image = np.array(image.convert("RGB"))

        point_labels, point_coords, box = self.handle_prompt_data(prompt)
        obj_id = frame_idx

        self.video_predictor.reset_state(self.video_inference_state)
        idx, scores, logits = self.add_prediction_to_frame(
            frame_idx=frame_idx,
            obj_id=obj_id,
            inference_state=self.video_inference_state,
            points=point_coords,
            labels=point_labels,
            box=box
        )
        masks = (logits[0] > 0.0).cpu().numpy()
        generated_masks = self.format_to_auto_result(masks)

        if filter_mode == COLOR_FILTER:
            image = create_solid_color_mask_image(image, generated_masks, color_hex)

        elif filter_mode == PIXELIZE_FILTER:
            image = create_mask_pixelized_image(image, generated_masks, pixel_size)

        return image

    def add_filter_to_video(self,
                            image_prompt_input_data: Dict,
                            filter_mode: str,
                            frame_idx: int,
                            pixel_size: Optional[int] = None,
                            color_hex: Optional[str] = None,):
        if self.video_predictor is None or self.video_inference_state is None:
            logger.exception("Error while adding filter to preview, load video predictor first")
            raise f"Error while adding filter to preview"

        if not image_prompt_input_data["points"]:
            error_message = ("No prompt data provided. If this is an incorrect flag, "
                             "Please press the eraser button (on the image prompter) and add your prompts again.")
            logger.error(error_message)
            raise gr.Error(error_message, duration=20)

        prompt_frame_image, prompt = image_prompt_input_data["image"], image_prompt_input_data["points"]

        point_labels, point_coords, box = self.handle_prompt_data(prompt)
        obj_id = frame_idx

        self.video_predictor.reset_state(self.video_inference_state)
        idx, scores, logits = self.add_prediction_to_frame(
            frame_idx=frame_idx,
            obj_id=obj_id,
            inference_state=self.video_inference_state,
            points=point_coords,
            labels=point_labels,
            box=box
        )

        video_segments = self.propagate_in_video(inference_state=self.video_inference_state)
        for frame_index, info in video_segments.items():
            orig_image, masks = info["image"], info["mask"]
            masks = self.format_to_auto_result(masks)

            if filter_mode == COLOR_FILTER:
                filtered_image = create_solid_color_mask_image(orig_image, masks, color_hex)

            elif filter_mode == PIXELIZE_FILTER:
                filtered_image = create_mask_pixelized_image(orig_image, masks, pixel_size)

            save_image(image=filtered_image, output_dir=TEMP_OUT_DIR)

    def divide_layer(self,
                     image_input: np.ndarray,
                     image_prompt_input_data: Dict,
                     input_mode: str,
                     model_type: str,
                     *params):
        timestamp = datetime.now().strftime("%m%d%H%M%S")
        output_file_name = f"result-{timestamp}.psd"
        output_path = os.path.join(self.output_dir, "psd", output_file_name)

        # Pre-processed gradio components
        hparams = {
            'points_per_side': int(params[0]),
            'points_per_batch': int(params[1]),
            'pred_iou_thresh': float(params[2]),
            'stability_score_thresh': float(params[3]),
            'stability_score_offset': float(params[4]),
            'crop_n_layers': int(params[5]),
            'box_nms_thresh': float(params[6]),
            'crop_n_points_downscale_factor': int(params[7]),
            'min_mask_region_area': int(params[8]),
            'use_m2m': bool(params[9]),
            'multimask_output': bool(params[10])
        }

        if input_mode == AUTOMATIC_MODE:
            image = image_input

            generated_masks = self.generate_mask(
                image=image,
                model_type=model_type,
                **hparams
            )

        elif input_mode == BOX_PROMPT_MODE:
            image = image_prompt_input_data["image"]
            image = np.array(image.convert("RGB"))
            prompt = image_prompt_input_data["points"]
            if len(prompt) == 0:
                return [image], []

            point_labels, point_coords, box = self.handle_prompt_data(prompt)

            predicted_masks, scores, logits = self.predict_image(
                image=image,
                model_type=model_type,
                box=box,
                point_coords=point_coords,
                point_labels=point_labels,
                multimask_output=hparams["multimask_output"]
            )
            generated_masks = self.format_to_auto_result(predicted_masks)

        save_psd_with_masks(image, generated_masks, output_path)
        mask_combined_image = create_mask_combined_images(image, generated_masks)
        gallery = create_mask_gallery(image, generated_masks)
        gallery = [mask_combined_image] + gallery

        return gallery, output_path

    @staticmethod
    def format_to_auto_result(
        masks: np.ndarray
    ):
        place_holder = 0
        if len(masks.shape) <= 3:
            masks = np.expand_dims(masks, axis=0)
        result = [{"segmentation": mask[0], "area": place_holder} for mask in masks]
        return result

    @staticmethod
    def handle_prompt_data(
        prompt_data: List
    ):
        """
        Handle data from ImageInputPrompter.

        Args:
            prompt_data (Dict): A dictionary containing the 'prompt' key with a list of prompts.

        Returns:
            point_labels (List): list of points labels.
            point_coords (List): list of points coords.
            box (List): list of box datas.
        """
        point_labels, point_coords, box = [], [], []

        for x1, y1, left_click_indicator, x2, y2, point_indicator in prompt_data:
            is_point = point_indicator == 4.0
            if is_point:
                point_labels.append(left_click_indicator)
                point_coords.append([x1, y1])
            else:
                box.append([x1, y1, x2, y2])

        point_labels = np.array(point_labels) if point_labels else None
        point_coords = np.array(point_coords) if point_coords else None
        box = np.array(box) if box else None

        return point_labels, point_coords, box