Spaces:
Running
Running
import gradio as gr | |
from gradio_image_prompter import ImagePrompter | |
import os | |
from modules.sam_inference import SamInference | |
from modules.model_downloader import DEFAULT_MODEL_TYPE | |
from modules.paths import OUTPUT_DIR | |
from modules.utils import open_folder | |
from modules.constants import (AUTOMATIC_MODE, BOX_PROMPT_MODE) | |
class App: | |
def __init__(self, | |
args=None): | |
self.app = gr.Blocks() | |
self.args = args | |
self.sam_inf = SamInference() | |
self.image_modes = [AUTOMATIC_MODE, BOX_PROMPT_MODE] | |
self.default_mode = AUTOMATIC_MODE | |
def on_mode_change(mode: str): | |
return [ | |
gr.Image(visible=mode == AUTOMATIC_MODE), | |
ImagePrompter(visible=mode == BOX_PROMPT_MODE), | |
gr.Accordion(visible=mode == AUTOMATIC_MODE) | |
] | |
def launch(self): | |
with self.app: | |
with gr.Row(): | |
with gr.Column(scale=5): | |
img_input = gr.Image(label="Input image here") | |
img_input_prompter = ImagePrompter(label="Prompt image with Box & Point", | |
visible=self.default_mode == BOX_PROMPT_MODE) | |
with gr.Column(scale=5): | |
dd_input_modes = gr.Dropdown(label="Image Input Mode", value=self.default_mode, | |
choices=self.image_modes) | |
dd_models = gr.Dropdown(label="Model", value=DEFAULT_MODEL_TYPE, | |
choices=self.sam_inf.available_models) | |
with gr.Accordion("Mask Parameters", open=False) as mask_hparams: | |
nb_points_per_side = gr.Number(label="points_per_side ", value=64, interactive=True) | |
nb_points_per_batch = gr.Number(label="points_per_batch ", value=128, interactive=True) | |
sld_pred_iou_thresh = gr.Slider(label="pred_iou_thresh ", value=0.7, minimum=0, maximum=1, | |
interactive=True) | |
sld_stability_score_thresh = gr.Slider(label="stability_score_thresh ", value=0.92, minimum=0, | |
maximum=1, interactive=True) | |
sld_stability_score_offset = gr.Slider(label="stability_score_offset ", value=0.7, minimum=0, | |
maximum=1) | |
nb_crop_n_layers = gr.Number(label="crop_n_layers ", value=1) | |
sld_box_nms_thresh = gr.Slider(label="box_nms_thresh ", value=0.7, minimum=0, | |
maximum=1) | |
nb_crop_n_points_downscale_factor = gr.Number(label="crop_n_points_downscale_factor ", value=2) | |
nb_min_mask_region_area = gr.Number(label="min_mask_region_area ", value=25) | |
cb_use_m2m = gr.Checkbox(label="use_m2m ", value=True) | |
with gr.Row(): | |
btn_generate = gr.Button("GENERATE", variant="primary") | |
with gr.Row(): | |
gallery_output = gr.Gallery(label="Output images will be shown here") | |
with gr.Column(): | |
output_file = gr.File(label="Generated psd file", scale=9) | |
btn_open_folder = gr.Button("π\nOpen PSD folder", scale=1) | |
sources = [img_input] | |
model_params = [dd_models] | |
auto_mask_hparams = [nb_points_per_side, nb_points_per_batch, sld_pred_iou_thresh, | |
sld_stability_score_thresh, sld_stability_score_offset, nb_crop_n_layers, | |
sld_box_nms_thresh, nb_crop_n_points_downscale_factor, nb_min_mask_region_area, | |
cb_use_m2m] | |
btn_generate.click(fn=self.sam_inf.generate_mask_app, | |
inputs=sources + model_params + auto_mask_hparams, outputs=[gallery_output, output_file]) | |
btn_open_folder.click(fn=lambda: open_folder(os.path.join(OUTPUT_DIR)), | |
inputs=None, outputs=None) | |
dd_input_modes.change(fn=self.on_mode_change, | |
inputs=[dd_input_modes], | |
outputs=[img_input, img_input_prompter, mask_hparams]) | |
self.app.queue().launch(inbrowser=True) | |
if __name__ == "__main__": | |
app = App() | |
app.launch() | |