Spaces:
Runtime error
Runtime error
File size: 13,934 Bytes
02f6d94 50e5356 02f6d94 78c99d1 02f6d94 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 |
# MIT License
# Copyright (c) 2024 Jiahao Shao
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
import functools
import os
import zipfile
import tempfile
from io import BytesIO
import spaces
import gradio as gr
import numpy as np
import torch as torch
from PIL import Image
from tqdm import tqdm
import mediapy as media
from huggingface_hub import login
from chronodepth_pipeline import ChronoDepthPipeline
from gradio_patches.examples import Examples
default_seed = 2024
default_num_inference_steps = 5
default_num_frames = 10
default_window_size = 9
default_video_processing_resolution = 768
default_video_out_max_frames = 80
default_decode_chunk_size = 10
def process_video(
pipe,
path_input,
num_inference_steps=default_num_inference_steps,
num_frames=default_num_frames,
window_size=default_window_size,
out_max_frames=default_video_out_max_frames,
progress=gr.Progress(),
):
if path_input is None:
raise gr.Error(
"Missing video in the first pane: upload a file or use one from the gallery below."
)
name_base, name_ext = os.path.splitext(os.path.basename(path_input))
print(f"Processing video {name_base}{name_ext}")
path_output_dir = tempfile.mkdtemp()
path_out_vis = os.path.join(path_output_dir, f"{name_base}_depth_colored.mp4")
path_out_16bit = os.path.join(path_output_dir, f"{name_base}_depth_16bit.zip")
generator = torch.Generator(device=pipe.device).manual_seed(default_seed)
import time
start_time = time.time()
zipf = None
try:
if window_size is None or window_size == num_frames:
inpaint_inference = False
else:
inpaint_inference = True
data_ls = []
video_data = media.read_video(path_input)
video_length = len(video_data)
fps = video_data.metadata.fps
duration_sec = video_length / fps
out_duration_sec = out_max_frames / fps
if duration_sec > out_duration_sec:
gr.Warning(
f"Only the first ~{int(out_duration_sec)} seconds will be processed; "
f"use alternative setups such as ChronoDepth on github for full processing"
)
video_length = out_max_frames
for i in tqdm(range(video_length-num_frames+1)):
is_first_clip = i == 0
is_last_clip = i == video_length - num_frames
is_new_clip = (
(inpaint_inference and i % window_size == 0)
or (inpaint_inference == False and i % num_frames == 0)
)
if is_first_clip or is_last_clip or is_new_clip:
data_ls.append(np.array(video_data[i: i+num_frames])) # [t, H, W, 3]
zipf = zipfile.ZipFile(path_out_16bit, "w", zipfile.ZIP_DEFLATED)
depth_colored_pred = []
depth_pred = []
# -------------------- Inference and saving --------------------
with torch.no_grad():
for iter, batch in enumerate(tqdm(data_ls)):
rgb_int = batch
input_images = [Image.fromarray(rgb_int[i]) for i in range(num_frames)]
# Predict depth
if iter == 0: # First clip
pipe_out = pipe(
input_images,
num_frames=len(input_images),
num_inference_steps=num_inference_steps,
decode_chunk_size=default_decode_chunk_size,
motion_bucket_id=127,
fps=7,
noise_aug_strength=0.0,
generator=generator,
)
elif inpaint_inference and (iter == len(data_ls) - 1): # temporal inpaint inference for last clip
last_window_size = window_size if video_length%window_size == 0 else video_length%window_size
pipe_out = pipe(
input_images,
num_frames=num_frames,
num_inference_steps=num_inference_steps,
decode_chunk_size=default_decode_chunk_size,
motion_bucket_id=127,
fps=7,
noise_aug_strength=0.0,
generator=generator,
depth_pred_last=depth_frames_pred_ts[last_window_size:],
)
elif inpaint_inference and iter > 0: # temporal inpaint inference
pipe_out = pipe(
input_images,
num_frames=num_frames,
num_inference_steps=num_inference_steps,
decode_chunk_size=default_decode_chunk_size,
motion_bucket_id=127,
fps=7,
noise_aug_strength=0.0,
generator=generator,
depth_pred_last=depth_frames_pred_ts[window_size:],
)
else: # separate inference
pipe_out = pipe(
input_images,
num_frames=num_frames,
num_inference_steps=num_inference_steps,
decode_chunk_size=default_decode_chunk_size,
motion_bucket_id=127,
fps=7,
noise_aug_strength=0.0,
generator=generator,
)
depth_frames_pred = [pipe_out.depth_np[i] for i in range(num_frames)]
depth_frames_colored_pred = []
for i in range(num_frames):
depth_frame_colored_pred = np.array(pipe_out.depth_colored[i])
depth_frames_colored_pred.append(depth_frame_colored_pred)
depth_frames_colored_pred = np.stack(depth_frames_colored_pred, axis=0)
depth_frames_pred = np.stack(depth_frames_pred, axis=0)
depth_frames_pred_ts = torch.from_numpy(depth_frames_pred).to(pipe.device)
depth_frames_pred_ts = depth_frames_pred_ts * 2 - 1
if inpaint_inference == False:
if iter == len(data_ls) - 1:
last_window_size = num_frames if video_length%num_frames == 0 else video_length%num_frames
depth_colored_pred.append(depth_frames_colored_pred[-last_window_size:])
depth_pred.append(depth_frames_pred[-last_window_size:])
else:
depth_colored_pred.append(depth_frames_colored_pred)
depth_pred.append(depth_frames_pred)
else:
if iter == 0:
depth_colored_pred.append(depth_frames_colored_pred)
depth_pred.append(depth_frames_pred)
elif iter == len(data_ls) - 1:
depth_colored_pred.append(depth_frames_colored_pred[-last_window_size:])
depth_pred.append(depth_frames_pred[-last_window_size:])
else:
depth_colored_pred.append(depth_frames_colored_pred[-window_size:])
depth_pred.append(depth_frames_pred[-window_size:])
depth_colored_pred = np.concatenate(depth_colored_pred, axis=0)
depth_pred = np.concatenate(depth_pred, axis=0)
# -------------------- Save results --------------------
# Save images
for i in tqdm(range(len(depth_pred))):
archive_path = os.path.join(
f"{name_base}_depth_16bit", f"{i:05d}.png"
)
img_byte_arr = BytesIO()
depth_16bit = Image.fromarray((depth_pred[i] * 65535.0).astype(np.uint16))
depth_16bit.save(img_byte_arr, format="png")
img_byte_arr.seek(0)
zipf.writestr(archive_path, img_byte_arr.read())
# Export to video
media.write_video(path_out_vis, depth_colored_pred, fps=fps)
finally:
if zipf is not None:
zipf.close()
end_time = time.time()
print(f"Processing time: {end_time - start_time} seconds")
return (
path_out_vis,
[path_out_vis, path_out_16bit],
)
def run_demo_server(pipe):
process_pipe_video = spaces.GPU(
functools.partial(process_video, pipe), duration=220
)
os.environ["GRADIO_ALLOW_FLAGGING"] = "never"
with gr.Blocks(
analytics_enabled=False,
title="ChronoDepth Video Depth Estimation",
css="""
#download {
height: 118px;
}
.slider .inner {
width: 5px;
background: #FFF;
}
.viewport {
aspect-ratio: 4/3;
}
h1 {
text-align: center;
display: block;
}
h2 {
text-align: center;
display: block;
}
h3 {
text-align: center;
display: block;
}
""",
) as demo:
gr.Markdown(
"""
# ChronoDepth Video Depth Estimation
<p align="center">
<a title="Website" href="https://jhaoshao.github.io/ChronoDepth/" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
<img src="https://img.shields.io/website?url=https%3A%2F%2Fjhaoshao.github.io%2FChronoDepth%2F&up_message=ChronoDepth&up_color=blue&style=flat&logo=timescale&logoColor=%23FFDC0F">
</a>
<a title="arXiv" href="https://arxiv.org/abs/2312.02145" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
<img src="https://img.shields.io/badge/arXiv-PDF-b31b1b">
</a>
<a title="Github" href="https://github.com/jhaoshao/ChronoDepth" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
<img src="https://img.shields.io/github/stars/jhaoshao/ChronoDepth?label=GitHub%20%E2%98%85&logo=github&color=C8C" alt="badge-github-stars">
</a>
</p>
ChronoDepth is the state-of-the-art video depth estimator for videos in the wild.
Upload your video and have a try!<br>
We set denoising steps to 5, number of frames for each video clip to 10, and overlap between clips to 1.
"""
)
with gr.Row():
with gr.Column():
video_input = gr.Video(
label="Input Video",
sources=["upload"],
)
with gr.Row():
video_submit_btn = gr.Button(
value="Compute Depth", variant="primary"
)
video_reset_btn = gr.Button(value="Reset")
with gr.Column():
video_output_video = gr.Video(
label="Output video depth (red-near, blue-far)",
interactive=False,
)
video_output_files = gr.Files(
label="Depth outputs",
elem_id="download",
interactive=False,
)
Examples(
fn=process_pipe_video,
examples=[
os.path.join("files", name)
for name in [
"sora_e2.mp4",
"sora_1758192960116785459.mp4",
]
],
inputs=[video_input],
outputs=[video_output_video, video_output_files],
cache_examples=True,
directory_name="examples_video",
)
video_submit_btn.click(
fn=process_pipe_video,
inputs=[video_input],
outputs=[video_output_video, video_output_files],
concurrency_limit=1,
)
video_reset_btn.click(
fn=lambda: (None, None, None),
inputs=[],
outputs=[video_input, video_output_video],
concurrency_limit=1,
)
demo.queue(
api_open=False,
).launch(
server_name="0.0.0.0",
server_port=7860,
)
def main():
CHECKPOINT = "jhshao/ChronoDepth"
if "HF_TOKEN_LOGIN" in os.environ:
login(token=os.environ["HF_TOKEN_LOGIN"])
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Running on device: {device}")
pipe = ChronoDepthPipeline.from_pretrained(CHECKPOINT)
try:
import xformers
pipe.enable_xformers_memory_efficient_attention()
except:
pass # run without xformers
pipe = pipe.to(device)
run_demo_server(pipe)
if __name__ == "__main__":
main()
|