File size: 20,490 Bytes
02f6d94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
# Adapted from Marigold: https://github.com/prs-eth/Marigold and diffusers

import inspect
from typing import Union, Optional, List

import torch
import numpy as np
import matplotlib.pyplot as plt
from tqdm.auto import tqdm
import PIL
from PIL import Image
from diffusers import (
    DiffusionPipeline,
    EulerDiscreteScheduler,
    UNetSpatioTemporalConditionModel,
    AutoencoderKLTemporalDecoder,
)
from diffusers.image_processor import VaeImageProcessor
from diffusers.utils import BaseOutput
from diffusers.utils.torch_utils import is_compiled_module, randn_tensor
from transformers import (
    CLIPVisionModelWithProjection,
    CLIPImageProcessor,
)
from einops import rearrange, repeat


class ChronoDepthOutput(BaseOutput):
    r"""
    Output class for zero-shot text-to-video pipeline.

    Args:
        frames (`[List[PIL.Image.Image]`, `np.ndarray`]):
            List of denoised PIL images of length `batch_size` or NumPy array of shape `(batch_size, height, width,
            num_channels)`.
    """
    depth_np: np.ndarray
    depth_colored: Union[List[PIL.Image.Image], np.ndarray]


class ChronoDepthPipeline(DiffusionPipeline):
    model_cpu_offload_seq = "image_encoder->unet->vae"
    _callback_tensor_inputs = ["latents"]
    rgb_latent_scale_factor = 0.18215
    depth_latent_scale_factor = 0.18215

    def __init__(
        self,
        vae: AutoencoderKLTemporalDecoder,
        image_encoder: CLIPVisionModelWithProjection,
        unet: UNetSpatioTemporalConditionModel,
        scheduler: EulerDiscreteScheduler,
        feature_extractor: CLIPImageProcessor,
    ):
        super().__init__()

        self.register_modules(
            vae=vae,
            image_encoder=image_encoder,
            unet=unet,
            scheduler=scheduler,
            feature_extractor=feature_extractor,
        )
        self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
        self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
        if not hasattr(self, "dtype"):
            self.dtype = self.unet.dtype

    def encode_RGB(self,
                   image: torch.Tensor,
                   ):
        video_length = image.shape[1]
        image = rearrange(image, "b f c h w -> (b f) c h w")
        latents = self.vae.encode(image).latent_dist.sample()
        latents = rearrange(latents, "(b f) c h w -> b f c h w", f=video_length)
        latents = latents * self.vae.config.scaling_factor
        
        return latents
    
    def _encode_image(self, image, device, discard=True):
        '''
        set image to zero tensor discards the image embeddings if discard is True
        '''
        dtype = next(self.image_encoder.parameters()).dtype

        if not isinstance(image, torch.Tensor):
            image = self.image_processor.pil_to_numpy(image)
            if discard:
                image = np.zeros_like(image)
            image = self.image_processor.numpy_to_pt(image)

            # We normalize the image before resizing to match with the original implementation.
            # Then we unnormalize it after resizing.
            image = image * 2.0 - 1.0
            image = _resize_with_antialiasing(image, (224, 224))
            image = (image + 1.0) / 2.0

            # Normalize the image with for CLIP input
            image = self.feature_extractor(
                images=image,
                do_normalize=True,
                do_center_crop=False,
                do_resize=False,
                do_rescale=False,
                return_tensors="pt",
            ).pixel_values

        image = image.to(device=device, dtype=dtype)
        image_embeddings = self.image_encoder(image).image_embeds
        image_embeddings = image_embeddings.unsqueeze(1)

        return image_embeddings
    
    def decode_depth(self, depth_latent: torch.Tensor, decode_chunk_size=5) -> torch.Tensor:
        num_frames = depth_latent.shape[1]
        depth_latent = rearrange(depth_latent, "b f c h w -> (b f) c h w")

        depth_latent = depth_latent / self.vae.config.scaling_factor

        forward_vae_fn = self.vae._orig_mod.forward if is_compiled_module(self.vae) else self.vae.forward
        accepts_num_frames = "num_frames" in set(inspect.signature(forward_vae_fn).parameters.keys())
        
        depth_frames = []
        for i in range(0, depth_latent.shape[0], decode_chunk_size):
            num_frames_in = depth_latent[i : i + decode_chunk_size].shape[0]
            decode_kwargs = {}
            if accepts_num_frames:
                # we only pass num_frames_in if it's expected
                decode_kwargs["num_frames"] = num_frames_in

            depth_frame = self.vae.decode(depth_latent[i : i + decode_chunk_size], **decode_kwargs).sample
            depth_frames.append(depth_frame)

        depth_frames = torch.cat(depth_frames, dim=0)
        depth_frames = depth_frames.reshape(-1, num_frames, *depth_frames.shape[1:])
        depth_mean = depth_frames.mean(dim=2, keepdim=True)
        
        return depth_mean

    def _get_add_time_ids(self,
                          fps,
                          motion_bucket_id,
                          noise_aug_strength,
                          dtype,
                          batch_size,
                          ):
        add_time_ids = [fps, motion_bucket_id, noise_aug_strength]

        passed_add_embed_dim = self.unet.config.addition_time_embed_dim * \
            len(add_time_ids)
        expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features

        if expected_add_embed_dim != passed_add_embed_dim:
            raise ValueError(
                f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
            )

        add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
        add_time_ids = add_time_ids.repeat(batch_size, 1)
        return add_time_ids

    def decode_latents(self, latents, num_frames, decode_chunk_size=14):
        # [batch, frames, channels, height, width] -> [batch*frames, channels, height, width]
        latents = latents.flatten(0, 1)

        latents = 1 / self.vae.config.scaling_factor * latents

        forward_vae_fn = self.vae._orig_mod.forward if is_compiled_module(self.vae) else self.vae.forward
        accepts_num_frames = "num_frames" in set(inspect.signature(forward_vae_fn).parameters.keys())

        # decode decode_chunk_size frames at a time to avoid OOM
        frames = []
        for i in range(0, latents.shape[0], decode_chunk_size):
            num_frames_in = latents[i : i + decode_chunk_size].shape[0]
            decode_kwargs = {}
            if accepts_num_frames:
                # we only pass num_frames_in if it's expected
                decode_kwargs["num_frames"] = num_frames_in

            frame = self.vae.decode(latents[i : i + decode_chunk_size], **decode_kwargs).sample
            frames.append(frame)
        frames = torch.cat(frames, dim=0)

        # [batch*frames, channels, height, width] -> [batch, channels, frames, height, width]
        frames = frames.reshape(-1, num_frames, *frames.shape[1:]).permute(0, 2, 1, 3, 4)

        # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
        frames = frames.float()
        return frames

    def check_inputs(self, image, height, width):
        if (
            not isinstance(image, torch.Tensor)
            and not isinstance(image, PIL.Image.Image)
            and not isinstance(image, list)
        ):
            raise ValueError(
                "`image` has to be of type `torch.FloatTensor` or `PIL.Image.Image` or `List[PIL.Image.Image]` but is"
                f" {type(image)}"
            )

        if height % 64 != 0 or width % 64 != 0:
            raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")

    def prepare_latents(
        self,
        shape,
        dtype,
        device,
        generator,
        latent=None,
    ):
        if isinstance(generator, list) and len(generator) != shape[0]:
            raise ValueError(
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                f" size of {shape[0]}. Make sure the batch size matches the length of the generators."
            )

        if latent is None:
            latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
        else:
            latents = latents.to(device)

        # scale the initial noise by the standard deviation required by the scheduler
        latents = latents * self.scheduler.init_noise_sigma
        return latents

    @property
    def num_timesteps(self):
        return self._num_timesteps

    @torch.no_grad()
    def __call__(
        self,
        input_image: Union[List[PIL.Image.Image], torch.FloatTensor],
        height: int = 576,
        width: int = 768,
        num_frames: Optional[int] = None,
        num_inference_steps: int = 10,
        fps: int = 7,
        motion_bucket_id: int = 127,
        noise_aug_strength: float = 0.02,
        decode_chunk_size: Optional[int] = None,
        color_map: str="Spectral",
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        show_progress_bar: bool = True,
        match_input_res: bool = True,
        depth_pred_last: Optional[torch.FloatTensor] = None,
    ):
        assert height >= 0 and width >=0
        assert num_inference_steps >=1

        num_frames = num_frames if num_frames is not None else self.unet.config.num_frames
        decode_chunk_size = decode_chunk_size if decode_chunk_size is not None else num_frames

        # 1. Check inputs. Raise error if not correct
        self.check_inputs(input_image, height, width)

        # 2. Define call parameters
        if isinstance(input_image, list):
            batch_size = 1
            input_size = input_image[0].size
        elif isinstance(input_image, torch.Tensor):
            batch_size = input_image.shape[0]
            input_size = input_image.shape[:-3:-1]
        assert batch_size == 1, "Batch size must be 1 for now"
        device = self._execution_device

        # 3. Encode input image
        image_embeddings = self._encode_image(input_image[0], device)
        image_embeddings = image_embeddings.repeat((batch_size, 1, 1))

        # NOTE: Stable Diffusion Video was conditioned on fps - 1, which
        # is why it is reduced here.
        # See: https://github.com/Stability-AI/generative-models/blob/ed0997173f98eaf8f4edf7ba5fe8f15c6b877fd3/scripts/sampling/simple_video_sample.py#L188
        fps = fps - 1

        # 4. Encode input image using VAE
        input_image = self.image_processor.preprocess(input_image, height=height, width=width).to(device)
        assert input_image.min() >= -1.0 and input_image.max() <= 1.0
        noise = randn_tensor(input_image.shape, generator=generator, device=device, dtype=input_image.dtype)
        input_image = input_image + noise_aug_strength * noise
        if depth_pred_last is not None:
            depth_pred_last = depth_pred_last.to(device)
            # resize depth
            from torchvision.transforms import InterpolationMode
            from torchvision.transforms.functional import resize
            depth_pred_last = resize(depth_pred_last.unsqueeze(1), (height, width), InterpolationMode.NEAREST_EXACT, antialias=True)
            depth_pred_last = repeat(depth_pred_last, 'f c h w ->b f c h w', b=batch_size)

        rgb_batch = repeat(input_image, 'f c h w ->b f c h w', b=batch_size)

        added_time_ids = self._get_add_time_ids(
            fps,
            motion_bucket_id,
            noise_aug_strength,
            image_embeddings.dtype,
            batch_size,
        )
        added_time_ids = added_time_ids.to(device)

        depth_pred_raw = self.single_infer(rgb_batch, 
                                           image_embeddings,
                                           added_time_ids,
                                           num_inference_steps,
                                           show_progress_bar,
                                           generator,
                                           depth_pred_last=depth_pred_last,
                                           decode_chunk_size=decode_chunk_size)
        
        depth_colored_img_list = []
        depth_frames = []
        for i in range(num_frames):
            depth_frame = depth_pred_raw[:, i].squeeze()
        
            # Convert to numpy
            depth_frame = depth_frame.cpu().numpy().astype(np.float32)

            if match_input_res:
                pred_img = Image.fromarray(depth_frame)
                pred_img = pred_img.resize(input_size, resample=Image.NEAREST)
                depth_frame = np.asarray(pred_img)

            # Clip output range: current size is the original size
            depth_frame = depth_frame.clip(0, 1)
        
            # Colorize
            depth_colored = plt.get_cmap(color_map)(depth_frame, bytes=True)[..., :3]
            depth_colored_img = Image.fromarray(depth_colored)
            
            depth_colored_img_list.append(depth_colored_img)
            depth_frames.append(depth_frame)
        
        depth_frame = np.stack(depth_frames)

        self.maybe_free_model_hooks()

        return ChronoDepthOutput(
            depth_np = depth_frames,
            depth_colored = depth_colored_img_list,
        )

    @torch.no_grad()
    def single_infer(self,
                     input_rgb: torch.Tensor,
                     image_embeddings: torch.Tensor,
                     added_time_ids: torch.Tensor,
                     num_inference_steps: int,
                     show_pbar: bool,
                     generator: Optional[Union[torch.Generator, List[torch.Generator]]],
                     depth_pred_last: Optional[torch.Tensor] = None,
                     decode_chunk_size=1,
                     ):
        device = input_rgb.device

        needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
        if needs_upcasting:
            self.vae.to(dtype=torch.float32)

        rgb_latent = self.encode_RGB(input_rgb)
        rgb_latent = rgb_latent.to(image_embeddings.dtype)
        if depth_pred_last is not None:
            depth_pred_last = depth_pred_last.repeat(1, 1, 3, 1, 1)
            depth_pred_last_latent = self.encode_RGB(depth_pred_last)
            depth_pred_last_latent = depth_pred_last_latent.to(image_embeddings.dtype)
        else:
            depth_pred_last_latent = None
        
        # cast back to fp16 if needed
        if needs_upcasting:
            self.vae.to(dtype=torch.float16)

        # Prepare timesteps
        self.scheduler.set_timesteps(num_inference_steps, device=device)
        timesteps = self.scheduler.timesteps

        depth_latent = self.prepare_latents(
            rgb_latent.shape,
            image_embeddings.dtype,
            device,
            generator
        )

        if show_pbar:
            iterable = tqdm(
                enumerate(timesteps),
                total=len(timesteps),
                leave=False,
                desc=" " * 4 + "Diffusion denoising",
            )
        else:
            iterable = enumerate(timesteps)
        
        for i, t in iterable:
            if depth_pred_last_latent is not None:
                known_frames_num = depth_pred_last_latent.shape[1]
                epsilon = randn_tensor(
                    depth_pred_last_latent.shape, 
                    generator=generator, 
                    device=device, 
                    dtype=image_embeddings.dtype
                    )
                depth_latent[:, :known_frames_num] = depth_pred_last_latent + epsilon * self.scheduler.sigmas[i]
            depth_latent = self.scheduler.scale_model_input(depth_latent, t)
            unet_input = torch.cat([rgb_latent, depth_latent], dim=2)
            
            noise_pred = self.unet(
                unet_input, t, image_embeddings, added_time_ids=added_time_ids
            )[0]

            # compute the previous noisy sample x_t -> x_t-1
            depth_latent = self.scheduler.step(noise_pred, t, depth_latent).prev_sample
        
        torch.cuda.empty_cache()
        if needs_upcasting:
            self.vae.to(dtype=torch.float16)
        depth = self.decode_depth(depth_latent, decode_chunk_size=decode_chunk_size)
        # clip prediction
        depth = torch.clip(depth, -1.0, 1.0)
        # shift to [0, 1]
        depth = (depth + 1.0) / 2.0

        return depth
    
# resizing utils
def _resize_with_antialiasing(input, size, interpolation="bicubic", align_corners=True):
    h, w = input.shape[-2:]
    factors = (h / size[0], w / size[1])

    # First, we have to determine sigma
    # Taken from skimage: https://github.com/scikit-image/scikit-image/blob/v0.19.2/skimage/transform/_warps.py#L171
    sigmas = (
        max((factors[0] - 1.0) / 2.0, 0.001),
        max((factors[1] - 1.0) / 2.0, 0.001),
    )

    # Now kernel size. Good results are for 3 sigma, but that is kind of slow. Pillow uses 1 sigma
    # https://github.com/python-pillow/Pillow/blob/master/src/libImaging/Resample.c#L206
    # But they do it in the 2 passes, which gives better results. Let's try 2 sigmas for now
    ks = int(max(2.0 * 2 * sigmas[0], 3)), int(max(2.0 * 2 * sigmas[1], 3))

    # Make sure it is odd
    if (ks[0] % 2) == 0:
        ks = ks[0] + 1, ks[1]

    if (ks[1] % 2) == 0:
        ks = ks[0], ks[1] + 1

    input = _gaussian_blur2d(input, ks, sigmas)

    output = torch.nn.functional.interpolate(input, size=size, mode=interpolation, align_corners=align_corners)
    return output


def _compute_padding(kernel_size):
    """Compute padding tuple."""
    # 4 or 6 ints:  (padding_left, padding_right,padding_top,padding_bottom)
    # https://pytorch.org/docs/stable/nn.html#torch.nn.functional.pad
    if len(kernel_size) < 2:
        raise AssertionError(kernel_size)
    computed = [k - 1 for k in kernel_size]

    # for even kernels we need to do asymmetric padding :(
    out_padding = 2 * len(kernel_size) * [0]

    for i in range(len(kernel_size)):
        computed_tmp = computed[-(i + 1)]

        pad_front = computed_tmp // 2
        pad_rear = computed_tmp - pad_front

        out_padding[2 * i + 0] = pad_front
        out_padding[2 * i + 1] = pad_rear

    return out_padding


def _filter2d(input, kernel):
    # prepare kernel
    b, c, h, w = input.shape
    tmp_kernel = kernel[:, None, ...].to(device=input.device, dtype=input.dtype)

    tmp_kernel = tmp_kernel.expand(-1, c, -1, -1)

    height, width = tmp_kernel.shape[-2:]

    padding_shape: list[int] = _compute_padding([height, width])
    input = torch.nn.functional.pad(input, padding_shape, mode="reflect")

    # kernel and input tensor reshape to align element-wise or batch-wise params
    tmp_kernel = tmp_kernel.reshape(-1, 1, height, width)
    input = input.view(-1, tmp_kernel.size(0), input.size(-2), input.size(-1))

    # convolve the tensor with the kernel.
    output = torch.nn.functional.conv2d(input, tmp_kernel, groups=tmp_kernel.size(0), padding=0, stride=1)

    out = output.view(b, c, h, w)
    return out


def _gaussian(window_size: int, sigma):
    if isinstance(sigma, float):
        sigma = torch.tensor([[sigma]])

    batch_size = sigma.shape[0]

    x = (torch.arange(window_size, device=sigma.device, dtype=sigma.dtype) - window_size // 2).expand(batch_size, -1)

    if window_size % 2 == 0:
        x = x + 0.5

    gauss = torch.exp(-x.pow(2.0) / (2 * sigma.pow(2.0)))

    return gauss / gauss.sum(-1, keepdim=True)


def _gaussian_blur2d(input, kernel_size, sigma):
    if isinstance(sigma, tuple):
        sigma = torch.tensor([sigma], dtype=input.dtype)
    else:
        sigma = sigma.to(dtype=input.dtype)

    ky, kx = int(kernel_size[0]), int(kernel_size[1])
    bs = sigma.shape[0]
    kernel_x = _gaussian(kx, sigma[:, 1].view(bs, 1))
    kernel_y = _gaussian(ky, sigma[:, 0].view(bs, 1))
    out_x = _filter2d(input, kernel_x[..., None, :])
    out = _filter2d(out_x, kernel_y[..., None])

    return out