# MIT License # Copyright (c) 2024 Jiahao Shao # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import functools import os import zipfile import tempfile from io import BytesIO import spaces import gradio as gr import numpy as np import torch as torch from PIL import Image from tqdm import tqdm import mediapy as media from huggingface_hub import login from chronodepth_pipeline import ChronoDepthPipeline from gradio_patches.examples import Examples default_seed = 2024 default_num_inference_steps = 5 default_num_frames = 10 default_window_size = 9 default_video_processing_resolution = 768 default_video_out_max_frames = 80 default_decode_chunk_size = 10 def process_video( pipe, path_input, num_inference_steps=default_num_inference_steps, num_frames=default_num_frames, window_size=default_window_size, out_max_frames=default_video_out_max_frames, progress=gr.Progress(), ): if path_input is None: raise gr.Error( "Missing video in the first pane: upload a file or use one from the gallery below." ) name_base, name_ext = os.path.splitext(os.path.basename(path_input)) print(f"Processing video {name_base}{name_ext}") path_output_dir = tempfile.mkdtemp() path_out_vis = os.path.join(path_output_dir, f"{name_base}_depth_colored.mp4") path_out_16bit = os.path.join(path_output_dir, f"{name_base}_depth_16bit.zip") generator = torch.Generator(device=pipe.device).manual_seed(default_seed) import time start_time = time.time() zipf = None try: if window_size is None or window_size == num_frames: inpaint_inference = False else: inpaint_inference = True data_ls = [] video_data = media.read_video(path_input) video_length = len(video_data) fps = video_data.metadata.fps duration_sec = video_length / fps out_duration_sec = out_max_frames / fps if duration_sec > out_duration_sec: gr.Warning( f"Only the first ~{int(out_duration_sec)} seconds will be processed; " f"use alternative setups such as ChronoDepth on github for full processing" ) video_length = out_max_frames for i in tqdm(range(video_length-num_frames+1)): is_first_clip = i == 0 is_last_clip = i == video_length - num_frames is_new_clip = ( (inpaint_inference and i % window_size == 0) or (inpaint_inference == False and i % num_frames == 0) ) if is_first_clip or is_last_clip or is_new_clip: data_ls.append(np.array(video_data[i: i+num_frames])) # [t, H, W, 3] zipf = zipfile.ZipFile(path_out_16bit, "w", zipfile.ZIP_DEFLATED) depth_colored_pred = [] depth_pred = [] # -------------------- Inference and saving -------------------- with torch.no_grad(): for iter, batch in enumerate(tqdm(data_ls)): rgb_int = batch input_images = [Image.fromarray(rgb_int[i]) for i in range(num_frames)] # Predict depth if iter == 0: # First clip pipe_out = pipe( input_images, num_frames=len(input_images), num_inference_steps=num_inference_steps, decode_chunk_size=default_decode_chunk_size, motion_bucket_id=127, fps=7, noise_aug_strength=0.0, generator=generator, ) elif inpaint_inference and (iter == len(data_ls) - 1): # temporal inpaint inference for last clip last_window_size = window_size if video_length%window_size == 0 else video_length%window_size pipe_out = pipe( input_images, num_frames=num_frames, num_inference_steps=num_inference_steps, decode_chunk_size=default_decode_chunk_size, motion_bucket_id=127, fps=7, noise_aug_strength=0.0, generator=generator, depth_pred_last=depth_frames_pred_ts[last_window_size:], ) elif inpaint_inference and iter > 0: # temporal inpaint inference pipe_out = pipe( input_images, num_frames=num_frames, num_inference_steps=num_inference_steps, decode_chunk_size=default_decode_chunk_size, motion_bucket_id=127, fps=7, noise_aug_strength=0.0, generator=generator, depth_pred_last=depth_frames_pred_ts[window_size:], ) else: # separate inference pipe_out = pipe( input_images, num_frames=num_frames, num_inference_steps=num_inference_steps, decode_chunk_size=default_decode_chunk_size, motion_bucket_id=127, fps=7, noise_aug_strength=0.0, generator=generator, ) depth_frames_pred = [pipe_out.depth_np[i] for i in range(num_frames)] depth_frames_colored_pred = [] for i in range(num_frames): depth_frame_colored_pred = np.array(pipe_out.depth_colored[i]) depth_frames_colored_pred.append(depth_frame_colored_pred) depth_frames_colored_pred = np.stack(depth_frames_colored_pred, axis=0) depth_frames_pred = np.stack(depth_frames_pred, axis=0) depth_frames_pred_ts = torch.from_numpy(depth_frames_pred).to(pipe.device) depth_frames_pred_ts = depth_frames_pred_ts * 2 - 1 if inpaint_inference == False: if iter == len(data_ls) - 1: last_window_size = num_frames if video_length%num_frames == 0 else video_length%num_frames depth_colored_pred.append(depth_frames_colored_pred[-last_window_size:]) depth_pred.append(depth_frames_pred[-last_window_size:]) else: depth_colored_pred.append(depth_frames_colored_pred) depth_pred.append(depth_frames_pred) else: if iter == 0: depth_colored_pred.append(depth_frames_colored_pred) depth_pred.append(depth_frames_pred) elif iter == len(data_ls) - 1: depth_colored_pred.append(depth_frames_colored_pred[-last_window_size:]) depth_pred.append(depth_frames_pred[-last_window_size:]) else: depth_colored_pred.append(depth_frames_colored_pred[-window_size:]) depth_pred.append(depth_frames_pred[-window_size:]) depth_colored_pred = np.concatenate(depth_colored_pred, axis=0) depth_pred = np.concatenate(depth_pred, axis=0) # -------------------- Save results -------------------- # Save images for i in tqdm(range(len(depth_pred))): archive_path = os.path.join( f"{name_base}_depth_16bit", f"{i:05d}.png" ) img_byte_arr = BytesIO() depth_16bit = Image.fromarray((depth_pred[i] * 65535.0).astype(np.uint16)) depth_16bit.save(img_byte_arr, format="png") img_byte_arr.seek(0) zipf.writestr(archive_path, img_byte_arr.read()) # Export to video media.write_video(path_out_vis, depth_colored_pred, fps=fps) finally: if zipf is not None: zipf.close() end_time = time.time() print(f"Processing time: {end_time - start_time} seconds") return ( path_out_vis, [path_out_vis, path_out_16bit], ) def run_demo_server(pipe): process_pipe_video = spaces.GPU( functools.partial(process_video, pipe), duration=220 ) os.environ["GRADIO_ALLOW_FLAGGING"] = "never" with gr.Blocks( analytics_enabled=False, title="ChronoDepth Video Depth Estimation", css=""" #download { height: 118px; } .slider .inner { width: 5px; background: #FFF; } .viewport { aspect-ratio: 4/3; } h1 { text-align: center; display: block; } h2 { text-align: center; display: block; } h3 { text-align: center; display: block; } """, ) as demo: gr.Markdown( """ # ChronoDepth Video Depth Estimation

badge-github-stars

ChronoDepth is the state-of-the-art video depth estimator for videos in the wild. Upload your video and have a try!
We set denoising steps to 5, number of frames for each video clip to 10, and overlap between clips to 1. """ ) with gr.Row(): with gr.Column(): video_input = gr.Video( label="Input Video", sources=["upload"], ) with gr.Row(): video_submit_btn = gr.Button( value="Compute Depth", variant="primary" ) video_reset_btn = gr.Button(value="Reset") with gr.Column(): video_output_video = gr.Video( label="Output video depth (red-near, blue-far)", interactive=False, ) video_output_files = gr.Files( label="Depth outputs", elem_id="download", interactive=False, ) Examples( fn=process_pipe_video, examples=[ os.path.join("files", name) for name in [ "sora_e2.mp4", "sora_1758192960116785459.mp4", ] ], inputs=[video_input], outputs=[video_output_video, video_output_files], cache_examples=True, directory_name="examples_video", ) video_submit_btn.click( fn=process_pipe_video, inputs=[video_input], outputs=[video_output_video, video_output_files], concurrency_limit=1, ) video_reset_btn.click( fn=lambda: (None, None, None), inputs=[], outputs=[video_input, video_output_video], concurrency_limit=1, ) demo.queue( api_open=False, ).launch( server_name="0.0.0.0", server_port=7860, ) def main(): CHECKPOINT = "jhshao/ChronoDepth" if "HF_TOKEN_LOGIN" in os.environ: login(token=os.environ["HF_TOKEN_LOGIN"]) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print(f"Running on device: {device}") pipe = ChronoDepthPipeline.from_pretrained(CHECKPOINT) try: import xformers pipe.enable_xformers_memory_efficient_attention() except: pass # run without xformers pipe = pipe.to(device) run_demo_server(pipe) if __name__ == "__main__": main()