File size: 17,675 Bytes
6fc042a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
""" 
    Implementation of neural networks used in the task 'Music Mastering Style Transfer'
        - 'Effects Encoder'
        - 'Mastering Style Transfer'
        - 'Differentiable Mastering Style Transfer'
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.init as init
import dasp_pytorch

import os
import sys
import time
currentdir = os.path.dirname(os.path.realpath(__file__))
sys.path.append(currentdir)
from network_utils import *
from dasp_additionals import Multiband_Compressor, Distortion, Limiter

# compute receptive field
def compute_receptive_field(kernels, strides, dilations):
    rf = 0
    for i in range(len(kernels)):
        rf += rf * strides[i] + (kernels[i]-strides[i]) * dilations[i]
    return rf



# Encoder of music effects for contrastive learning of music effects
class Effects_Encoder(nn.Module):
    def __init__(self, config):
        super(Effects_Encoder, self).__init__()
        # input is stereo channeled audio
        config["channels"].insert(0, 2)

        # encoder layers
        encoder = []
        for i in range(len(config["kernels"])):
            if config["conv_block"]=='res':
                encoder.append(Res_ConvBlock(dimension=1, \
                                                in_channels=config["channels"][i], \
                                                out_channels=config["channels"][i+1], \
                                                kernel_size=config["kernels"][i], \
                                                stride=config["strides"][i], \
                                                padding="SAME", \
                                                dilation=config["dilation"][i], \
                                                norm=config["norm"], \
                                                activation=config["activation"], \
                                                last_activation=config["activation"]))
            elif config["conv_block"]=='conv':
                encoder.append(ConvBlock(dimension=1, \
                                            layer_num=1, \
                                            in_channels=config["channels"][i], \
                                            out_channels=config["channels"][i+1], \
                                            kernel_size=config["kernels"][i], \
                                            stride=config["strides"][i], \
                                            padding="VALID", \
                                            dilation=config["dilation"][i], \
                                            norm=config["norm"], \
                                            activation=config["activation"], \
                                            last_activation=config["activation"], \
                                            mode='conv'))
        self.encoder = nn.Sequential(*encoder)

        # pooling method
        self.glob_pool = nn.AdaptiveAvgPool1d(1)


    # network forward operation
    def forward(self, input):
        enc_output = self.encoder(input)
        glob_pooled = self.glob_pool(enc_output).squeeze(-1)

        # outputs c feature
        return glob_pooled



class TCNBlock(torch.nn.Module):
    def __init__(self, 
                in_ch, 
                out_ch, 
                kernel_size=3, 
                stride=1, 
                dilation=1, 
                cond_dim=2048, 
                grouped=False, 
                causal=False,
                conditional=False, 
                **kwargs):
        super(TCNBlock, self).__init__()

        self.in_ch = in_ch
        self.out_ch = out_ch
        self.kernel_size = kernel_size
        self.dilation = dilation
        self.grouped = grouped
        self.causal = causal
        self.conditional = conditional

        groups = out_ch if grouped and (in_ch % out_ch == 0) else 1

        self.pad_length = ((kernel_size-1)*dilation) if self.causal else ((kernel_size-1)*dilation)//2
        self.conv1 = torch.nn.Conv1d(in_ch, 
                                     out_ch, 
                                     kernel_size=kernel_size, 
                                     stride=stride,
                                     padding=self.pad_length,
                                     dilation=dilation,
                                     groups=groups,
                                     bias=False)
        if grouped:
            self.conv1b = torch.nn.Conv1d(out_ch, out_ch, kernel_size=1)

        if conditional:
            self.film = FiLM(cond_dim, out_ch)
        self.bn = torch.nn.BatchNorm1d(out_ch)

        self.relu = torch.nn.LeakyReLU()
        self.res = torch.nn.Conv1d(in_ch, 
                                   out_ch, 
                                   kernel_size=1,
                                   stride=stride,
                                   groups=in_ch,
                                   bias=False)


    def forward(self, x, p):
        x_in = x

        x = self.relu(self.bn(self.conv1(x)))
        x = self.film(x, p)

        x_res = self.res(x_in)

        if self.causal:
            x = x[..., :-self.pad_length]
        x += x_res

        return x



import pytorch_lightning as pl
class TCNModel(pl.LightningModule):
    """ Temporal convolutional network with conditioning module.
        Args:
            nparams (int): Number of conditioning parameters.
            ninputs (int): Number of input channels (mono = 1, stereo 2). Default: 1
            noutputs (int): Number of output channels (mono = 1, stereo 2). Default: 1
            nblocks (int): Number of total TCN blocks. Default: 10
            kernel_size (int): Width of the convolutional kernels. Default: 3
            dialation_growth (int): Compute the dilation factor at each block as dilation_growth ** (n % stack_size). Default: 1
            channel_growth (int): Compute the output channels at each black as in_ch * channel_growth. Default: 2
            channel_width (int): When channel_growth = 1 all blocks use convolutions with this many channels. Default: 64
            stack_size (int): Number of blocks that constitute a single stack of blocks. Default: 10
            grouped (bool): Use grouped convolutions to reduce the total number of parameters. Default: False
            causal (bool): Causal TCN configuration does not consider future input values. Default: False
            skip_connections (bool): Skip connections from each block to the output. Default: False
            num_examples (int): Number of evaluation audio examples to log after each epochs. Default: 4
        """
    def __init__(self, 
                 nparams,
                 ninputs=1,
                 noutputs=1,
                 nblocks=10, 
                 kernel_size=3, 
                 stride=1,
                 dilation_growth=1, 
                 channel_growth=1, 
                 channel_width=32, 
                 stack_size=10,
                 cond_dim=2048,
                 grouped=False,
                 causal=False,
                 skip_connections=False,
                 num_examples=4,
                 save_dir=None,
                 **kwargs):
        super(TCNModel, self).__init__()
        self.save_hyperparameters()

        self.blocks = torch.nn.ModuleList()
        for n in range(nblocks):
            in_ch = out_ch if n > 0 else ninputs
            
            if self.hparams.channel_growth > 1:
                out_ch = in_ch * self.hparams.channel_growth 
            else:
                out_ch = self.hparams.channel_width

            dilation = self.hparams.dilation_growth ** (n % self.hparams.stack_size)
            cur_stride = stride[n] if isinstance(stride, list) else stride
            self.blocks.append(TCNBlock(in_ch, 
                                        out_ch, 
                                        kernel_size=self.hparams.kernel_size, 
                                        stride=cur_stride, 
                                        dilation=dilation,
                                        padding="same" if self.hparams.causal else "valid",
                                        causal=self.hparams.causal,
                                        cond_dim=cond_dim, 
                                        grouped=self.hparams.grouped,
                                        conditional=True if self.hparams.nparams > 0 else False))

        self.output = torch.nn.Conv1d(out_ch, noutputs, kernel_size=1)

    def forward(self, x, cond):
        # iterate over blocks passing conditioning
        for idx, block in enumerate(self.blocks):
            # for SeFa
            if isinstance(cond, list):
                x = block(x, cond[idx])
            else:
                x = block(x, cond)
            skips = 0

        # out = torch.tanh(self.output(x + skips))
        out = torch.clamp(self.output(x + skips), min=-1, max=1)

        return out

    def compute_receptive_field(self):
        """ Compute the receptive field in samples."""
        rf = self.hparams.kernel_size
        for n in range(1,self.hparams.nblocks):
            dilation = self.hparams.dilation_growth ** (n % self.hparams.stack_size)
            rf = rf + ((self.hparams.kernel_size-1) * dilation)
        return rf

    # add any model hyperparameters here
    @staticmethod
    def add_model_specific_args(parent_parser):
        parser = ArgumentParser(parents=[parent_parser], add_help=False)
        # --- model related ---
        parser.add_argument('--ninputs', type=int, default=1)
        parser.add_argument('--noutputs', type=int, default=1)
        parser.add_argument('--nblocks', type=int, default=4)
        parser.add_argument('--kernel_size', type=int, default=5)
        parser.add_argument('--dilation_growth', type=int, default=10)
        parser.add_argument('--channel_growth', type=int, default=1)
        parser.add_argument('--channel_width', type=int, default=32)
        parser.add_argument('--stack_size', type=int, default=10)
        parser.add_argument('--grouped', default=False, action='store_true')
        parser.add_argument('--causal', default=False, action="store_true")
        parser.add_argument('--skip_connections', default=False, action="store_true")

        return parser



# Module for fitting SeFa parameters
class Dasp_Mastering_Style_Transfer(nn.Module):
    def __init__(self, num_features, sample_rate, \
                    tgt_fx_names = ['eq', 'comp', 'imager', 'gain'], \
                    model_type='2mlp', \
                    config=None, \
                    batch_size=4):
        super(Dasp_Mastering_Style_Transfer, self).__init__()
        self.sample_rate = sample_rate
        self.tgt_fx_names = tgt_fx_names

        self.fx_processors = {}
        self.last_predicted_params = None
        for cur_fx in tgt_fx_names:
            if cur_fx=='eq':
                cur_fx_module = dasp_pytorch.ParametricEQ(sample_rate=sample_rate, \
                                                            min_gain_db = -20.0, \
                                                            max_gain_db = 20.0, \
                                                            min_q_factor = 0.1, \
                                                            max_q_factor=5.0)
            elif cur_fx=='distortion':
                cur_fx_module = Distortion(sample_rate=sample_rate, 
                                            min_gain_db = 0.0,
                                            max_gain_db = 8.0)
            elif cur_fx=='comp':
                cur_fx_module = dasp_pytorch.Compressor(sample_rate=sample_rate)
            elif cur_fx=='multiband_comp':
                cur_fx_module = Multiband_Compressor(sample_rate=sample_rate)
            elif cur_fx=='gain':
                cur_fx_module = dasp_pytorch.Gain(sample_rate=sample_rate)
            elif cur_fx=='imager':
                continue
            elif cur_fx=='limiter':
                cur_fx_module = Limiter(sample_rate=sample_rate)
            else:
                raise AssertionError(f"current fx name ({cur_fx}) not found")
            self.fx_processors[cur_fx] = cur_fx_module
        total_num_param = sum([self.fx_processors[cur_fx].num_params for cur_fx in self.fx_processors])
        if 'imager' in tgt_fx_names:
            total_num_param += 1
            
        ''' model architecture '''
        self.model_type = model_type
        if self.model_type.lower()=='tcn':
            self.network = TCNModel(nparams=config["condition_dimension"], ninputs=2, \
                                    noutputs=total_num_param, \
                                    nblocks=config["nblocks"], \
                                    dilation_growth=config["dilation_growth"], \
                                    kernel_size=config["kernel_size"], \
                                    stride=config['stride'], \
                                    channel_width=config["channel_width"], \
                                    stack_size=config["stack_size"], \
                                    cond_dim=config["condition_dimension"], \
                                    causal=config["causal"])
        elif self.model_type.lower()=='ito':
            self.params = torch.nn.Parameter(torch.ones((batch_size,total_num_param))*0.5)

    # network forward operation
    def forward(self, x, embedding):
        # embedding mapper
        if self.model_type.lower()=='tcn':
            est_param = self.network(x, embedding)
            est_param = est_param.mean(axis=-1)
        elif self.model_type.lower()=='ito':
            est_param = self.params
            est_param = torch.clamp(est_param, min=0.0, max=1.0)
        
        if self.model_type.lower()!='ito':
            est_param = F.sigmoid(est_param)

        self.last_predicted_params = est_param

        # dafx chain
        cur_param_idx = 0
        for cur_fx in self.tgt_fx_names:
            if cur_fx=='imager':
                cur_param_count = 1
                x = dasp_pytorch.functional.stereo_widener(x, \
                                                            sample_rate=self.sample_rate, \
                                                            width=est_param[:,cur_param_idx:cur_param_idx+1])
            else:
                cur_param_count = self.fx_processors[cur_fx].num_params
                cur_input_param = est_param[:, cur_param_idx:cur_param_idx+cur_param_count]
                x = self.fx_processors[cur_fx].process_normalized(x, cur_input_param)
            # update param index
            cur_param_idx += cur_param_count

        return x


    def reset_fx_chain(self, ):
        self.fx_processors = {}
        for cur_fx in self.tgt_fx_names:
            if cur_fx=='eq':
                cur_fx_module = dasp_pytorch.ParametricEQ(sample_rate=self.sample_rate, \
                                                            min_gain_db = -20.0, \
                                                            max_gain_db = 20.0, \
                                                            min_q_factor = 0.1, \
                                                            max_q_factor=5.0)
            elif cur_fx=='distortion':
                cur_fx_module = Distortion(sample_rate=self.sample_rate, 
                                            min_gain_db = 0.0,
                                            max_gain_db = 8.0)
            elif cur_fx=='comp':
                cur_fx_module = dasp_pytorch.Compressor(sample_rate=self.sample_rate)
            elif cur_fx=='multiband_comp':
                cur_fx_module = Multiband_Compressor(sample_rate=self.sample_rate)
            elif cur_fx=='gain':
                cur_fx_module = dasp_pytorch.Gain(sample_rate=self.sample_rate)
            elif cur_fx=='imager':
                continue
            elif cur_fx=='limiter':
                cur_fx_module = Limiter(sample_rate=self.sample_rate)
            else:
                raise AssertionError(f"current fx name ({cur_fx}) not found")
            self.fx_processors[cur_fx] = cur_fx_module

    def get_last_predicted_params(self):
        if self.last_predicted_params is None:
            return None

        params_dict = {}
        cur_param_idx = 0

        for cur_fx in self.tgt_fx_names:
            if cur_fx == 'imager':
                cur_param_count = 1
                normalized_param = self.last_predicted_params[:, cur_param_idx:cur_param_idx+1]
                original_param = self.denormalize_param(normalized_param, 0, 1)
                params_dict[cur_fx] = original_param
            else:
                cur_param_count = self.fx_processors[cur_fx].num_params
                normalized_params = self.last_predicted_params[:, cur_param_idx:cur_param_idx+cur_param_count]
                original_params = self.denormalize_params(cur_fx, normalized_params)
                params_dict[cur_fx] = original_params

            cur_param_idx += cur_param_count

        return params_dict

    def denormalize_params(self, fx_name, normalized_params):
        fx_processor = self.fx_processors[fx_name]
        original_params = {}

        for i, (param_name, (min_val, max_val)) in enumerate(fx_processor.param_ranges.items()):
            original_param = self.denormalize_param(normalized_params[:, i:i+1], min_val, max_val)
            original_params[param_name] = original_param

        return original_params

    @staticmethod
    def denormalize_param(normalized_param, min_val, max_val):
        return normalized_param * (max_val - min_val) + min_val