Spaces:
Running
Running
File size: 14,210 Bytes
6fc042a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 |
"""
Implementation of objective functions used in the task 'ITO-Master'
"""
import numpy as np
import torch
import torch.nn.functional as F
import torch.nn as nn
import auraloss
import os
import sys
currentdir = os.path.dirname(os.path.realpath(__file__))
sys.path.append(os.path.dirname(currentdir))
from modules.front_back_end import *
# Root Mean Squared Loss
# penalizes the volume factor with non-linearlity
class RMSLoss(nn.Module):
def __init__(self, reduce, loss_type="l2"):
super(RMSLoss, self).__init__()
self.weight_factor = 100.
if loss_type=="l2":
self.loss = nn.MSELoss(reduce=None)
def forward(self, est_targets, targets):
est_targets = est_targets.reshape(est_targets.shape[0]*est_targets.shape[1], est_targets.shape[2])
targets = targets.reshape(targets.shape[0]*targets.shape[1], targets.shape[2])
normalized_est = torch.sqrt(torch.mean(est_targets**2, dim=-1))
normalized_tgt = torch.sqrt(torch.mean(targets**2, dim=-1))
weight = torch.clamp(torch.abs(normalized_tgt-normalized_est), min=1/self.weight_factor) * self.weight_factor
return torch.mean(weight**1.5 * self.loss(normalized_est, normalized_tgt))
# Multi-Scale Spectral Loss proposed at the paper "DDSP: DIFFERENTIABLE DIGITAL SIGNAL PROCESSING" (https://arxiv.org/abs/2001.04643)
# we extend this loss by applying it to mid/side channels
class MultiScale_Spectral_Loss_MidSide_DDSP(nn.Module):
def __init__(self, mode='midside', \
reduce=True, \
n_filters=None, \
windows_size=None, \
hops_size=None, \
window="hann", \
eps=1e-7, \
device=torch.device("cpu")):
super(MultiScale_Spectral_Loss_MidSide_DDSP, self).__init__()
self.mode = mode
self.eps = eps
self.mid_weight = 0.5 # value in the range of 0.0 ~ 1.0
self.logmag_weight = 0.1
if n_filters is None:
n_filters = [4096, 2048, 1024, 512]
if windows_size is None:
windows_size = [4096, 2048, 1024, 512]
if hops_size is None:
hops_size = [1024, 512, 256, 128]
self.multiscales = []
for i in range(len(windows_size)):
cur_scale = {'window_size' : float(windows_size[i])}
if self.mode=='midside':
cur_scale['front_end'] = FrontEnd(channel='mono', \
n_fft=n_filters[i], \
hop_length=hops_size[i], \
win_length=windows_size[i], \
window=window, \
device=device)
elif self.mode=='ori':
cur_scale['front_end'] = FrontEnd(channel='stereo', \
n_fft=n_filters[i], \
hop_length=hops_size[i], \
win_length=windows_size[i], \
window=window, \
device=device)
self.multiscales.append(cur_scale)
self.objective_l1 = nn.L1Loss(reduce=reduce)
self.objective_l2 = nn.MSELoss(reduce=reduce)
def forward(self, est_targets, targets):
if self.mode=='midside':
return self.forward_midside(est_targets, targets)
elif self.mode=='ori':
return self.forward_ori(est_targets, targets)
def forward_ori(self, est_targets, targets):
total_loss = 0.0
total_mag_loss = 0.0
total_logmag_loss = 0.0
for cur_scale in self.multiscales:
est_mag = cur_scale['front_end'](est_targets, mode=["mag"])
tgt_mag = cur_scale['front_end'](targets, mode=["mag"])
mag_loss = self.magnitude_loss(est_mag, tgt_mag)
logmag_loss = self.log_magnitude_loss(est_mag, tgt_mag)
total_mag_loss += mag_loss
total_logmag_loss += logmag_loss
# return total_loss
return (1-self.logmag_weight)*total_mag_loss + \
(self.logmag_weight)*total_logmag_loss
def forward_midside(self, est_targets, targets):
est_mid, est_side = self.to_mid_side(est_targets)
tgt_mid, tgt_side = self.to_mid_side(targets)
total_loss = 0.0
total_mag_loss = 0.0
total_logmag_loss = 0.0
for cur_scale in self.multiscales:
est_mid_mag = cur_scale['front_end'](est_mid, mode=["mag"])
est_side_mag = cur_scale['front_end'](est_side, mode=["mag"])
tgt_mid_mag = cur_scale['front_end'](tgt_mid, mode=["mag"])
tgt_side_mag = cur_scale['front_end'](tgt_side, mode=["mag"])
mag_loss = self.mid_weight*self.magnitude_loss(est_mid_mag, tgt_mid_mag) + \
(1-self.mid_weight)*self.magnitude_loss(est_side_mag, tgt_side_mag)
logmag_loss = self.mid_weight*self.log_magnitude_loss(est_mid_mag, tgt_mid_mag) + \
(1-self.mid_weight)*self.log_magnitude_loss(est_side_mag, tgt_side_mag)
total_mag_loss += mag_loss
total_logmag_loss += logmag_loss
# return total_loss
return (1-self.logmag_weight)*total_mag_loss + \
(self.logmag_weight)*total_logmag_loss
def to_mid_side(self, stereo_in):
mid = stereo_in[:,0] + stereo_in[:,1]
side = stereo_in[:,0] - stereo_in[:,1]
return mid, side
def magnitude_loss(self, est_mag_spec, tgt_mag_spec):
return torch.norm(self.objective_l1(est_mag_spec, tgt_mag_spec))
def log_magnitude_loss(self, est_mag_spec, tgt_mag_spec):
est_log_mag_spec = torch.log10(est_mag_spec+self.eps)
tgt_log_mag_spec = torch.log10(tgt_mag_spec+self.eps)
return self.objective_l2(est_log_mag_spec, tgt_log_mag_spec)
# Class of available loss functions
class Loss:
def __init__(self, args, reduce=True):
device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device(f"cuda:{args.gpu}")
self.l1 = nn.L1Loss(reduce=reduce)
self.mse = nn.MSELoss(reduce=reduce)
self.ce = nn.CrossEntropyLoss()
self.triplet = nn.TripletMarginLoss(margin=1., p=2)
self.cos = nn.CosineSimilarity(eps=args.eps)
self.cosemb = nn.CosineEmbeddingLoss()
self.multi_scale_spectral_midside = MultiScale_Spectral_Loss_MidSide_DDSP(mode='midside', eps=args.eps, device=device)
self.multi_scale_spectral_ori = MultiScale_Spectral_Loss_MidSide_DDSP(mode='ori', eps=args.eps, device=device)
self.gain = RMSLoss(reduce=reduce)
self.infonce = infoNCE
# perceptual weighting with mel scaled spectrograms
self.mrs_mel_perceptual = auraloss.freq.MultiResolutionSTFTLoss(
fft_sizes=[1024, 2048, 8192],
hop_sizes=[256, 512, 2048],
win_lengths=[1024, 2048, 8192],
scale="mel",
n_bins=128,
sample_rate=args.sample_rate,
perceptual_weighting=True,
)
"""
Audio Feature Loss implementation
copied from https://github.com/sai-soum/Diff-MST/blob/main/mst/loss.py
"""
import librosa
from typing import List
from modules.filter import barkscale_fbanks
def compute_mid_side(x: torch.Tensor):
x_mid = x[:, 0, :] + x[:, 1, :]
x_side = x[:, 0, :] - x[:, 1, :]
return x_mid, x_side
def compute_melspectrum(
x: torch.Tensor,
sample_rate: int = 44100,
fft_size: int = 32768,
n_bins: int = 128,
**kwargs,
):
"""Compute mel-spectrogram.
Args:
x: (bs, 2, seq_len)
sample_rate: sample rate of audio
fft_size: size of fft
n_bins: number of mel bins
Returns:
X: (bs, n_bins)
"""
fb = librosa.filters.mel(sr=sample_rate, n_fft=fft_size, n_mels=n_bins)
fb = torch.tensor(fb).unsqueeze(0).type_as(x)
x = x.mean(dim=1, keepdim=True)
X = torch.fft.rfft(x, n=fft_size, dim=-1)
X = torch.abs(X)
X = torch.mean(X, dim=1, keepdim=True) # take mean over time
X = X.permute(0, 2, 1) # swap time and freq dims
X = torch.matmul(fb, X)
X = torch.log(X + 1e-8)
return X
def compute_barkspectrum(
x: torch.Tensor,
fft_size: int = 32768,
n_bands: int = 24,
sample_rate: int = 44100,
f_min: float = 20.0,
f_max: float = 20000.0,
mode: str = "mid-side",
**kwargs,
):
"""Compute bark-spectrogram.
Args:
x: (bs, 2, seq_len)
fft_size: size of fft
n_bands: number of bark bins
sample_rate: sample rate of audio
f_min: minimum frequency
f_max: maximum frequency
mode: "mono", "stereo", or "mid-side"
Returns:
X: (bs, 24)
"""
# compute filterbank
fb = barkscale_fbanks((fft_size // 2) + 1, f_min, f_max, n_bands, sample_rate)
fb = fb.unsqueeze(0).type_as(x)
fb = fb.permute(0, 2, 1)
if mode == "mono":
x = x.mean(dim=1) # average over channels
signals = [x]
elif mode == "stereo":
signals = [x[:, 0, :], x[:, 1, :]]
elif mode == "mid-side":
x_mid = x[:, 0, :] + x[:, 1, :]
x_side = x[:, 0, :] - x[:, 1, :]
signals = [x_mid, x_side]
else:
raise ValueError(f"Invalid mode {mode}")
outputs = []
for signal in signals:
X = torch.stft(
signal,
n_fft=fft_size,
hop_length=fft_size // 4,
return_complex=True,
window=torch.hann_window(fft_size).to(x.device),
) # compute stft
X = torch.abs(X) # take magnitude
X = torch.mean(X, dim=-1, keepdim=True) # take mean over time
# X = X.permute(0, 2, 1) # swap time and freq dims
X = torch.matmul(fb, X) # apply filterbank
X = torch.log(X + 1e-8)
# X = torch.cat([X, X_log], dim=-1)
outputs.append(X)
# stack into tensor
X = torch.cat(outputs, dim=-1)
return X
def compute_rms(x: torch.Tensor, **kwargs):
"""Compute root mean square energy.
Args:
x: (bs, 1, seq_len)
Returns:
rms: (bs, )
"""
rms = torch.sqrt(torch.mean(x**2, dim=-1).clamp(min=1e-8))
return rms
def compute_crest_factor(x: torch.Tensor, **kwargs):
"""Compute crest factor as ratio of peak to rms energy in dB.
Args:
x: (bs, 2, seq_len)
"""
num = torch.max(torch.abs(x), dim=-1)[0]
den = compute_rms(x).clamp(min=1e-8)
cf = 20 * torch.log10((num / den).clamp(min=1e-8))
return cf
def compute_stereo_width(x: torch.Tensor, **kwargs):
"""Compute stereo width as ratio of energy in sum and difference signals.
Args:
x: (bs, 2, seq_len)
"""
bs, chs, seq_len = x.size()
assert chs == 2, "Input must be stereo"
# compute sum and diff of stereo channels
x_sum = x[:, 0, :] + x[:, 1, :]
x_diff = x[:, 0, :] - x[:, 1, :]
# compute power of sum and diff
sum_energy = torch.mean(x_sum**2, dim=-1)
diff_energy = torch.mean(x_diff**2, dim=-1)
# compute stereo width as ratio
stereo_width = diff_energy / sum_energy.clamp(min=1e-8)
return stereo_width
def compute_stereo_imbalance(x: torch.Tensor, **kwargs):
"""Compute stereo imbalance as ratio of energy in left and right channels.
Args:
x: (bs, 2, seq_len)
Returns:
stereo_imbalance: (bs, )
"""
left_energy = torch.mean(x[:, 0, :] ** 2, dim=-1)
right_energy = torch.mean(x[:, 1, :] ** 2, dim=-1)
stereo_imbalance = (right_energy - left_energy) / (
right_energy + left_energy
).clamp(min=1e-8)
return stereo_imbalance
class AudioFeatureLoss(torch.nn.Module):
def __init__(
self,
weights: List[float],
sample_rate: int,
stem_separation: bool = False,
use_clap: bool = False,
) -> None:
"""Compute loss using a set of differentiable audio features.
Args:
weights: weights for each feature
sample_rate: sample rate of audio
stem_separation: whether to compute loss on stems or mix
Based on features proposed in:
Man, B. D., et al.
"An analysis and evaluation of audio features for multitrack music mixtures."
(2014).
"""
super().__init__()
self.weights = weights
self.sample_rate = sample_rate
self.stem_separation = stem_separation
self.sources_list = ["mix"]
self.source_weights = [1.0]
self.use_clap = use_clap
self.transforms = [
compute_rms,
compute_crest_factor,
compute_stereo_width,
compute_stereo_imbalance,
compute_barkspectrum,
]
assert len(self.transforms) == len(weights)
def forward(self, input: torch.Tensor, target: torch.Tensor):
losses = {}
# reshape for example stem dim
input_stems = input.unsqueeze(1)
target_stems = target.unsqueeze(1)
n_stems = input_stems.shape[1]
# iterate over each stem compute loss for each transform
for stem_idx in range(n_stems):
input_stem = input_stems[:, stem_idx, ...]
target_stem = target_stems[:, stem_idx, ...]
for transform, weight in zip(self.transforms, self.weights):
transform_name = "_".join(transform.__name__.split("_")[1:])
key = f"{self.sources_list[stem_idx]}-{transform_name}"
input_transform = transform(input_stem, sample_rate=self.sample_rate)
target_transform = transform(target_stem, sample_rate=self.sample_rate)
val = torch.nn.functional.mse_loss(input_transform, target_transform)
losses[key] = weight * val * self.source_weights[stem_idx]
return losses |