Spaces:
Running
Running
File size: 9,205 Bytes
6bbce1b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 |
import warnings
warnings.filterwarnings("ignore", category=DeprecationWarning)
import numpy as np
import scipy
import math
import librosa
import librosa.display
import fnmatch
import os
from functools import partial
import pyloudnorm
from scipy.signal import lfilter
from sklearn.metrics import mean_absolute_error, mean_squared_error
from sklearn.metrics.pairwise import paired_distances
import matplotlib.pyplot as plt
def db(x):
"""Computes the decible energy of a signal"""
return 20*np.log10(np.sqrt(np.mean(np.square(x))))
def melspectrogram(y, mirror_pad=False):
"""Compute melspectrogram feature extraction
Keyword arguments:
signal -- input audio as a signal in a numpy object
inputnorm -- normalization of output
mirror_pad -- pre and post-pend mirror signals
Returns freq x time
Assumes the input sampling rate is 22050Hz
"""
# Extract mel.
fftsize = 1024
window = 1024
hop = 512
melBin = 128
sr = 22050
# mirror pad signal
# first embedding centered on time 0
# last embedding centered on end of signal
if mirror_pad:
y = np.insert(y, 0, y[0:int(half_frame_length_sec * sr)][::-1])
y = np.insert(y, len(y), y[-int(half_frame_length_sec * sr):][::-1])
S = librosa.core.stft(y,n_fft=fftsize,hop_length=hop,win_length=window)
X = np.abs(S)
mel_basis = librosa.filters.mel(sr,n_fft=fftsize,n_mels=melBin)
mel_S = np.dot(mel_basis,X)
# value log compression
mel_S = np.log10(1+10*mel_S)
mel_S = mel_S.astype(np.float32)
return mel_S
def getFilesPath(directory, extension):
n_path=[]
for path, subdirs, files in os.walk(directory):
for name in files:
if fnmatch.fnmatch(name, extension):
n_path.append(os.path.join(path,name))
n_path.sort()
return n_path
def getRandomTrim(x, length, pad=0, start=None):
length = length+pad
if x.shape[0] <= length:
x_ = x
while(x.shape[0] <= length):
x_ = np.concatenate((x_,x_))
else:
if start is None:
start = np.random.randint(0, x.shape[0]-length, size=None)
end = length+start
if end > x.shape[0]:
x_ = x[start:]
x_ = np.concatenate((x_, x[:length-x.shape[0]]))
else:
x_ = x[start:length+start]
return x_[:length]
def fadeIn(x, length=128):
w = scipy.signal.hann(length*2, sym=True)
w1 = w[0:length]
ones = np.ones(int(x.shape[0]-length))
w = np.append(w1, ones)
return x*w
def fadeOut(x, length=128):
w = scipy.signal.hann(length*2, sym=True)
w2 = w[length:length*2]
ones = np.ones(int(x.shape[0]-length))
w = np.append(ones, w2)
return x*w
def plotTimeFreq(audio, sr, n_fft=512, hop_length=128, ylabels=None):
n = len(audio)
# plt.figure(figsize=(14, 4*n))
colors = list(plt.cm.viridis(np.linspace(0,1,n)))
X = []
X_db = []
maxs = np.zeros((n,))
mins = np.zeros((n,))
maxs_t = np.zeros((n,))
for i, x in enumerate(audio):
if x.ndim == 2 and x.shape[-1] == 2:
x = librosa.core.to_mono(x.T)
X_ = librosa.stft(x, n_fft=n_fft, hop_length=hop_length)
X_db_ = librosa.amplitude_to_db(abs(X_))
X.append(X_)
X_db.append(X_db_)
maxs[i] = np.max(X_db_)
mins[i] = np.min(X_db_)
maxs_t[i] = np.max(np.abs(x))
vmax = np.max(maxs)
vmin = np.min(mins)
tmax = np.max(maxs_t)
for i, x in enumerate(audio):
if x.ndim == 2 and x.shape[-1] == 2:
x = librosa.core.to_mono(x.T)
plt.subplot(n, 2, 2*i+1)
librosa.display.waveplot(x, sr=sr, color=colors[i])
if ylabels:
plt.ylabel(ylabels[i])
plt.ylim(-tmax,tmax)
plt.subplot(n, 2, 2*i+2)
librosa.display.specshow(X_db[i], sr=sr, x_axis='time', y_axis='log',
hop_length=hop_length, cmap='GnBu', vmax=vmax, vmin=vmin)
# plt.colorbar(format='%+2.0f dB')
def slicing(x, win_length, hop_length, center = True, windowing = False, pad = 0):
# Pad the time series so that frames are centered
if center:
# x = np.pad(x, int((win_length-hop_length+pad) // 2), mode='constant')
x = np.pad(x, ((int((win_length-hop_length+pad)//2), int((win_length+hop_length+pad)//2)),), mode='constant')
# Window the time series.
y_frames = librosa.util.frame(x, frame_length=win_length, hop_length=hop_length)
if windowing:
window = scipy.signal.hann(win_length, sym=False)
else:
window = 1.0
f = []
for i in range(len(y_frames.T)):
f.append(y_frames.T[i]*window)
return np.float32(np.asarray(f))
def overlap(x, x_len, win_length, hop_length, windowing = True, rate = 1):
x = x.reshape(x.shape[0],x.shape[1]).T
if windowing:
window = scipy.signal.hann(win_length, sym=False)
rate = rate*hop_length/win_length
else:
window = 1
rate = 1
n_frames = x_len / hop_length
expected_signal_len = int(win_length + hop_length * (n_frames))
y = np.zeros(expected_signal_len)
for i in range(int(n_frames)):
sample = i * hop_length
w = x[:, i]
y[sample:(sample + win_length)] = y[sample:(sample + win_length)] + w*window
y = y[int(win_length // 2):-int(win_length // 2)]
return np.float32(y*rate)
def highpassFiltering(x_list, f0, sr):
b1, a1 = scipy.signal.butter(4, f0/(sr/2),'highpass')
x_f = []
for x in x_list:
x_f_ = scipy.signal.filtfilt(b1, a1, x).copy(order='F')
x_f.append(x_f_)
return x_f
def lineartodB(x):
return 20*np.log10(x)
def dBtoLinear(x):
return np.power(10,x/20)
def lufs_normalize(x, sr, lufs, log=True):
# measure the loudness first
meter = pyloudnorm.Meter(sr) # create BS.1770 meter
loudness = meter.integrated_loudness(x+1e-10)
if log:
print("original loudness: ", loudness," max value: ", np.max(np.abs(x)))
loudness_normalized_audio = pyloudnorm.normalize.loudness(x, loudness, lufs)
maxabs_amp = np.maximum(1.0, 1e-6 + np.max(np.abs(loudness_normalized_audio)))
loudness_normalized_audio /= maxabs_amp
loudness = meter.integrated_loudness(loudness_normalized_audio)
if log:
print("new loudness: ", loudness," max value: ", np.max(np.abs(loudness_normalized_audio)))
return loudness_normalized_audio
import soxbindings as sox
def lufs_normalize_compand(x, sr, lufs):
tfm = sox.Transformer()
tfm.compand(attack_time = 0.001,
decay_time = 0.01,
soft_knee_db = 1.0,
tf_points = [(-70, -70), (-0.1, -20), (0, 0)])
x = tfm.build_array(input_array=x, sample_rate_in=sr).astype(np.float32)
# measure the loudness first
meter = pyloudnorm.Meter(sr) # create BS.1770 meter
loudness = meter.integrated_loudness(x)
print("original loudness: ", loudness," max value: ", np.max(np.abs(x)))
loudness_normalized_audio = pyloudnorm.normalize.loudness(x, loudness, lufs)
maxabs_amp = np.maximum(1.0, 1e-6 + np.max(np.abs(loudness_normalized_audio)))
loudness_normalized_audio /= maxabs_amp
loudness = meter.integrated_loudness(loudness_normalized_audio)
print("new loudness: ", loudness," max value: ", np.max(np.abs(loudness_normalized_audio)))
return loudness_normalized_audio
def getDistances(x,y):
distances = {}
distances['mae'] = mean_absolute_error(x, y)
distances['mse'] = mean_squared_error(x, y)
distances['euclidean'] = np.mean(paired_distances(x, y, metric='euclidean'))
distances['manhattan'] = np.mean(paired_distances(x, y, metric='manhattan'))
distances['cosine'] = np.mean(paired_distances(x, y, metric='cosine'))
distances['mae'] = round(distances['mae'], 5)
distances['mse'] = round(distances['mse'], 5)
distances['euclidean'] = round(distances['euclidean'], 5)
distances['manhattan'] = round(distances['manhattan'], 5)
distances['cosine'] = round(distances['cosine'], 5)
return distances
def getMFCC(x, sr, mels=128, mfcc=13, mean_norm=False):
melspec = librosa.feature.melspectrogram(y=x, sr=sr, S=None,
n_fft=1024, hop_length=256,
n_mels=mels, power=2.0)
melspec_dB = librosa.power_to_db(melspec, ref=np.max)
mfcc = librosa.feature.mfcc(S=melspec_dB, sr=sr, n_mfcc=mfcc)
if mean_norm:
mfcc -= (np.mean(mfcc, axis=0))
return mfcc
def getMSE_MFCC(y_true, y_pred, sr, mels=128, mfcc=13, mean_norm=False):
ratio = np.mean(np.abs(y_true))/np.mean(np.abs(y_pred))
y_pred = ratio*y_pred
y_mfcc = getMFCC(y_true, sr, mels=mels, mfcc=mfcc, mean_norm=mean_norm)
z_mfcc = getMFCC(y_pred, sr, mels=mels, mfcc=mfcc, mean_norm=mean_norm)
return getDistances(y_mfcc[:,:], z_mfcc[:,:]) |