Spaces:
Running
Running
File size: 17,683 Bytes
6fc042a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 |
"""
Implementation of differentiable mastering effects based on DASP-pytorch and torchcomp libraries
- Distortion
- Multiband Compressor
- Limiter
DASP-pytorch: https://github.com/csteinmetz1/dasp-pytorch
torchcomp: https://github.com/yoyololicon/torchcomp
"""
import dasp_pytorch
from dasp_pytorch.modules import Processor
import torchcomp
import torch
import torch.nn.functional as F
import torch.nn as nn
import numpy as np
import time
EPS = 1e-6
class Distortion(Processor):
def __init__(
self,
sample_rate: int,
min_gain_db: float = 0.0,
max_gain_db: float = 24.0,
):
super().__init__()
self.sample_rate = sample_rate
self.process_fn = distortion
self.param_ranges = {
"drive_db": (min_gain_db, max_gain_db),
"parallel_weight_factor": (0.2, 0.7),
}
self.num_params = len(self.param_ranges)
def distortion(x: torch.Tensor,
sample_rate: int,
drive_db: torch.Tensor,
parallel_weight_factor: torch.Tensor()):
"""Simple soft-clipping distortion with drive control.
Args:
x (torch.Tensor): Input audio tensor with shape (bs, chs, seq_len)
sample_rate (int): Audio sample rate.
drive_db (torch.Tensor): Drive in dB with shape (bs)
Returns:
torch.Tensor: Output audio tensor with shape (bs, chs, seq_len)
"""
bs, chs, seq_len = x.size()
parallel_weight_factor = parallel_weight_factor.view(-1, 1, 1)
# return torch.tanh(x * (10 ** (drive_db.view(bs, chs, -1) / 20.0))) -> wrong?
x_dist = torch.tanh(x * (10 ** (drive_db.view(bs, 1, 1) / 20.0)))
# parallel compuatation
return parallel_weight_factor * x_dist + (1-parallel_weight_factor) * x
class Multiband_Compressor(Processor):
def __init__(
self,
sample_rate: int,
min_threshold_db_comp: float = -60.0,
max_threshold_db_comp: float = 0.0-EPS,
min_ratio_comp: float = 1.0+EPS,
max_ratio_comp: float = 20.0,
min_attack_ms_comp: float = 5.0,
max_attack_ms_comp: float = 100.0,
min_release_ms_comp: float = 5.0,
max_release_ms_comp: float = 100.0,
min_threshold_db_exp: float = -60.0,
max_threshold_db_exp: float = 0.0-EPS,
min_ratio_exp: float = 0.0+EPS,
max_ratio_exp: float = 1.0-EPS,
min_attack_ms_exp: float = 5.0,
max_attack_ms_exp: float = 100.0,
min_release_ms_exp: float = 5.0,
max_release_ms_exp: float = 100.0,
):
super().__init__()
self.sample_rate = sample_rate
self.process_fn = multiband_compressor
self.param_ranges = {
"low_cutoff": (20, 300),
"high_cutoff": (2000, 12000),
"parallel_weight_factor": (0.2, 0.7),
"low_shelf_comp_thresh": (min_threshold_db_comp, max_threshold_db_comp),
"low_shelf_comp_ratio": (min_ratio_comp, max_ratio_comp),
"low_shelf_exp_thresh": (min_threshold_db_exp, max_threshold_db_exp),
"low_shelf_exp_ratio": (min_ratio_exp, max_ratio_exp),
"low_shelf_at": (min_attack_ms_exp, max_attack_ms_exp),
"low_shelf_rt": (min_release_ms_exp, max_release_ms_exp),
"mid_band_comp_thresh": (min_threshold_db_comp, max_threshold_db_comp),
"mid_band_comp_ratio": (min_ratio_comp, max_ratio_comp),
"mid_band_exp_thresh": (min_threshold_db_exp, max_threshold_db_exp),
"mid_band_exp_ratio": (min_ratio_exp, max_ratio_exp),
"mid_band_at": (min_attack_ms_exp, max_attack_ms_exp),
"mid_band_rt": (min_release_ms_exp, max_release_ms_exp),
"high_shelf_comp_thresh": (min_threshold_db_comp, max_threshold_db_comp),
"high_shelf_comp_ratio": (min_ratio_comp, max_ratio_comp),
"high_shelf_exp_thresh": (min_threshold_db_exp, max_threshold_db_exp),
"high_shelf_exp_ratio": (min_ratio_exp, max_ratio_exp),
"high_shelf_at": (min_attack_ms_exp, max_attack_ms_exp),
"high_shelf_rt": (min_release_ms_exp, max_release_ms_exp),
}
self.num_params = len(self.param_ranges)
def linkwitz_riley_4th_order(
x: torch.Tensor,
cutoff_freq: torch.Tensor,
sample_rate: float,
filter_type: str):
q_factor = torch.ones(cutoff_freq.shape) / torch.sqrt(torch.tensor([2.0]))
gain_db = torch.zeros(cutoff_freq.shape)
q_factor = q_factor.to(x.device)
gain_db = gain_db.to(x.device)
b, a = dasp_pytorch.signal.biquad(
gain_db,
cutoff_freq,
q_factor,
sample_rate,
filter_type
)
del gain_db
del q_factor
eff_bs = x.size(0)
# six second order sections
sos = torch.cat((b, a), dim=-1).unsqueeze(1)
# apply filter twice to phase difference amounts of 360°
x = dasp_pytorch.signal.sosfilt_via_fsm(sos, x)
x_out = dasp_pytorch.signal.sosfilt_via_fsm(sos, x)
return x_out
def multiband_compressor(
x: torch.Tensor,
sample_rate: float,
low_cutoff: torch.Tensor,
high_cutoff: torch.Tensor,
parallel_weight_factor: torch.Tensor,
low_shelf_comp_thresh: torch.Tensor,
low_shelf_comp_ratio: torch.Tensor,
low_shelf_exp_thresh: torch.Tensor,
low_shelf_exp_ratio: torch.Tensor,
low_shelf_at: torch.Tensor,
low_shelf_rt: torch.Tensor,
mid_band_comp_thresh: torch.Tensor,
mid_band_comp_ratio: torch.Tensor,
mid_band_exp_thresh: torch.Tensor,
mid_band_exp_ratio: torch.Tensor,
mid_band_at: torch.Tensor,
mid_band_rt: torch.Tensor,
high_shelf_comp_thresh: torch.Tensor,
high_shelf_comp_ratio: torch.Tensor,
high_shelf_exp_thresh: torch.Tensor,
high_shelf_exp_ratio: torch.Tensor,
high_shelf_at: torch.Tensor,
high_shelf_rt: torch.Tensor,
):
"""Multiband (Three-band) Compressor.
Low-shelf -> Mid-band -> High-shelf
Args:
x (torch.Tensor): Time domain tensor with shape (bs, chs, seq_len)
sample_rate (float): Audio sample rate.
low_cutoff (torch.Tensor): Low-shelf filter cutoff frequency in Hz.
high_cutoff (torch.Tensor): High-shelf filter cutoff frequency in Hz.
low_shelf_comp_thresh (torch.Tensor):
low_shelf_comp_ratio (torch.Tensor):
low_shelf_exp_thresh (torch.Tensor):
low_shelf_exp_ratio (torch.Tensor):
low_shelf_at (torch.Tensor):
low_shelf_rt (torch.Tensor):
mid_band_comp_thresh (torch.Tensor):
mid_band_comp_ratio (torch.Tensor):
mid_band_exp_thresh (torch.Tensor):
mid_band_exp_ratio (torch.Tensor):
mid_band_at (torch.Tensor):
mid_band_rt (torch.Tensor):
high_shelf_comp_thresh (torch.Tensor):
high_shelf_comp_ratio (torch.Tensor):
high_shelf_exp_thresh (torch.Tensor):
high_shelf_exp_ratio (torch.Tensor):
high_shelf_at (torch.Tensor):
high_shelf_rt (torch.Tensor):
Returns:
y (torch.Tensor): Filtered signal.
"""
bs, chs, seq_len = x.size()
low_cutoff = low_cutoff.view(-1, 1, 1)
high_cutoff = high_cutoff.view(-1, 1, 1)
parallel_weight_factor = parallel_weight_factor.view(-1, 1, 1)
eff_bs = x.size(0)
''' cross over filter '''
# Low-shelf band (low frequencies)
low_band = linkwitz_riley_4th_order(x, low_cutoff, sample_rate, filter_type="low_pass")
# High-shelf band (high frequencies)
high_band = linkwitz_riley_4th_order(x, high_cutoff, sample_rate, filter_type="high_pass")
# Mid-band (band-pass)
mid_band = x - low_band - high_band # Subtract low and high bands from original signal
''' compressor '''
try:
x_out_low = low_band * torchcomp.compexp_gain(low_band.sum(axis=1).abs(),
comp_thresh=low_shelf_comp_thresh, \
comp_ratio=low_shelf_comp_ratio, \
exp_thresh=low_shelf_exp_thresh, \
exp_ratio=low_shelf_exp_ratio, \
at=torchcomp.ms2coef(low_shelf_at, sample_rate), \
rt=torchcomp.ms2coef(low_shelf_rt, sample_rate)).unsqueeze(1)
except:
x_out_low = low_band
print('\t!!!failed computing low-band compression!!!')
try:
x_out_high = high_band * torchcomp.compexp_gain(high_band.sum(axis=1).abs(),
comp_thresh=high_shelf_comp_thresh, \
comp_ratio=high_shelf_comp_ratio, \
exp_thresh=high_shelf_exp_thresh, \
exp_ratio=high_shelf_exp_ratio, \
at=torchcomp.ms2coef(high_shelf_at, sample_rate), \
rt=torchcomp.ms2coef(high_shelf_rt, sample_rate)).unsqueeze(1)
except:
x_out_high = high_band
print('\t!!!failed computing high-band compression!!!')
try:
x_out_mid = mid_band * torchcomp.compexp_gain(mid_band.sum(axis=1).abs(),
comp_thresh=mid_band_comp_thresh, \
comp_ratio=mid_band_comp_ratio, \
exp_thresh=mid_band_exp_thresh, \
exp_ratio=mid_band_exp_ratio, \
at=torchcomp.ms2coef(mid_band_at, sample_rate), \
rt=torchcomp.ms2coef(mid_band_rt, sample_rate)).unsqueeze(1)
except:
x_out_mid = mid_band
print('\t!!!failed computing mid-band compression!!!')
x_out = x_out_low + x_out_high + x_out_mid
# parallel computation
x_out = parallel_weight_factor * x_out + (1-parallel_weight_factor) * x
# move channels back
x_out = x_out.view(bs, chs, seq_len)
return x_out
class Limiter(Processor):
def __init__(
self,
sample_rate: int,
min_threshold_db: float = -60.0,
max_threshold_db: float = 0.0-EPS,
min_attack_ms: float = 5.0,
max_attack_ms: float = 100.0,
min_release_ms: float = 5.0,
max_release_ms: float = 100.0,
):
super().__init__()
self.sample_rate = sample_rate
self.process_fn = limiter
self.param_ranges = {
"threshold": (min_threshold_db, max_threshold_db),
"at": (min_attack_ms, max_attack_ms),
"rt": (min_release_ms, max_release_ms),
}
self.num_params = len(self.param_ranges)
def limiter(
x: torch.Tensor,
sample_rate: float,
threshold: float,
at: float,
rt: float,
):
"""Limiter.
from Chin-yun's paper
Args:
x (torch.Tensor): Time domain tensor with shape (bs, chs, seq_len)
sample_rate (float): Audio sample rate.
threshold (torch.Tensor): Limiter threshold in dB.
at (torch.Tensor): Attack time.
rt (torch.Tensor): Release time.
Returns:
y (torch.Tensor): Limited signal.
"""
bs, chs, seq_len = x.size()
x_out = x * torchcomp.limiter_gain(x.sum(axis=1).abs(),
threshold=threshold,
at=torchcomp.ms2coef(at, sample_rate),
rt=torchcomp.ms2coef(rt, sample_rate)).unsqueeze(1)
# move channels back
x_out = x_out.view(bs, chs, seq_len)
return x_out
class Random_Augmentation_Dasp(nn.Module):
def __init__(self, sample_rate, \
tgt_fx_names = ['eq', 'comp', 'imager', 'gain']):
super(Random_Augmentation_Dasp, self).__init__()
self.sample_rate = sample_rate
self.tgt_fx_names = tgt_fx_names
self.device = torch.device("cpu")
if torch.cuda.is_available():
self.device = torch.device(f"cuda")
self.fx_prob = {'eq': 0.9, \
'distortion': 0.3, \
'comp': 0.8, \
'multiband_comp': 0.8, \
'gain': 0.85, \
'imager': 0.6, \
'limiter': 1.0}
self.fx_processors = {}
for cur_fx in tgt_fx_names:
if cur_fx=='eq':
cur_fx_module = dasp_pytorch.ParametricEQ(sample_rate=sample_rate, \
min_gain_db = -10.0, \
max_gain_db = 10.0, \
min_q_factor = 0.5, \
max_q_factor=5.0)
elif cur_fx=='distortion':
cur_fx_module = Distortion(sample_rate=sample_rate,
min_gain_db = 0.0,
max_gain_db = 4.0)
elif cur_fx=='comp':
cur_fx_module = dasp_pytorch.Compressor(sample_rate=sample_rate)
elif cur_fx=='multiband_comp':
cur_fx_module = Multiband_Compressor(sample_rate=sample_rate,
min_threshold_db_comp = -30.0,
max_threshold_db_comp = -5.0,
min_ratio_comp = 1.5,
max_ratio_comp = 6.0,
min_attack_ms_comp = 1.0,
max_attack_ms_comp = 20.0,
min_release_ms_comp = 20.0,
max_release_ms_comp = 500.0,
min_threshold_db_exp = -30.0,
max_threshold_db_exp = -5.0,
min_ratio_exp = 0.0+EPS,
max_ratio_exp = 1.0-EPS,
min_attack_ms_exp = 1.0,
max_attack_ms_exp = 20.0,
min_release_ms_exp = 20.0,
max_release_ms_exp = 500.0,
)
elif cur_fx=='gain':
cur_fx_module = dasp_pytorch.Gain(sample_rate=sample_rate,
min_gain_db = 0.0,
max_gain_db = 6.0,)
elif cur_fx=='imager':
continue
elif cur_fx=='limiter':
cur_fx_module = Limiter(sample_rate=sample_rate,
min_threshold_db = -20.0,
max_threshold_db = 0.0-EPS,
min_attack_ms = 0.1,
max_attack_ms = 5.0,
min_release_ms = 20.0,
max_release_ms = 1000.0,)
else:
raise AssertionError(f"current fx name ({cur_fx}) not found")
self.fx_processors[cur_fx] = cur_fx_module
total_num_param = sum([self.fx_processors[cur_fx].num_params for cur_fx in self.fx_processors])
if 'imager' in tgt_fx_names:
total_num_param += 1
self.total_num_param = total_num_param
# network forward operation
def forward(self, x, rand_param=None, use_mask=None):
if rand_param==None:
rand_param = torch.rand((x.shape[0], self.total_num_param)).to(self.device)
else:
assert rand_param.shape[0]==x.shape[0] and rand_param.shape[1]==self.total_num_param
if use_mask==None:
use_mask = self.random_mask_generator(x.shape[0])
# dafx chain
cur_param_idx = 0
for cur_fx in self.tgt_fx_names:
cur_param_count = 1 if cur_fx=='imager' else self.fx_processors[cur_fx].num_params
if cur_fx=='imager':
x_processed = dasp_pytorch.functional.stereo_widener(x, \
sample_rate=self.sample_rate, \
width=rand_param[:,cur_param_idx:cur_param_idx+1])
else:
cur_input_param = rand_param[:, cur_param_idx:cur_param_idx+cur_param_count]
x_processed = self.fx_processors[cur_fx].process_normalized(x, cur_input_param)
# process all FX but decide to use the processed output based on probability
cur_mask = use_mask[cur_fx]
x = x_processed*cur_mask + x*~cur_mask
# update param index
cur_param_idx += cur_param_count
return x
def random_mask_generator(self, batch_size, repeat=1):
mask = {}
for cur_fx in self.tgt_fx_names:
mask[cur_fx] = self.fx_prob[cur_fx] > torch.rand(batch_size).view(-1, 1, 1)
if repeat>1:
mask[cur_fx] = mask[cur_fx].repeat(repeat, 1, 1)
mask[cur_fx] = mask[cur_fx].to(self.device)
return mask
|