File size: 11,658 Bytes
6fc042a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
"""
    Utility File
        containing functions for neural networks
"""
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.init as init
import torch
import torchaudio



# 2-dimensional convolutional layer
# in the order of conv -> norm -> activation
class Conv2d_layer(nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size, \
                                    stride=1, \
                                    padding="SAME", dilation=(1,1), bias=True, \
                                    norm="batch", activation="relu", \
                                    mode="conv"):
        super(Conv2d_layer, self).__init__()

        self.conv2d = nn.Sequential()

        if isinstance(kernel_size, int):
            kernel_size = [kernel_size, kernel_size]
        if isinstance(stride, int):
            stride = [stride, stride]
        if isinstance(dilation, int):
            dilation = [dilation, dilation]

        ''' padding '''
        if mode=="deconv":
            padding = tuple(int((current_kernel - 1)/2) for current_kernel in kernel_size)
            out_padding = tuple(0 if current_stride == 1 else 1 for current_stride in stride)
        elif mode=="conv":
            if padding == "SAME":
                f_pad = int((kernel_size[0]-1) * dilation[0])
                t_pad = int((kernel_size[1]-1) * dilation[1])
                t_l_pad = int(t_pad//2)
                t_r_pad = t_pad - t_l_pad
                f_l_pad = int(f_pad//2)
                f_r_pad = f_pad - f_l_pad
                padding_area = (t_l_pad, t_r_pad, f_l_pad, f_r_pad)
            elif padding == "VALID":
                padding = 0
            else:
                pass

        ''' convolutional layer '''
        if mode=="deconv":
            self.conv2d.add_module("deconv2d", nn.ConvTranspose2d(in_channels, out_channels, \
                                                            (kernel_size[0], kernel_size[1]), \
                                                            stride=stride, \
                                                            padding=padding, output_padding=out_padding, \
                                                            dilation=dilation, \
                                                            bias=bias))
        elif mode=="conv":
            self.conv2d.add_module(f"{mode}2d_pad", nn.ReflectionPad2d(padding_area))
            self.conv2d.add_module(f"{mode}2d", nn.Conv2d(in_channels, out_channels, \
                                                            (kernel_size[0], kernel_size[1]), \
                                                            stride=stride, \
                                                            padding=0, \
                                                            dilation=dilation, \
                                                            bias=bias))
        
        ''' normalization '''
        if norm=="batch":
            self.conv2d.add_module("batch_norm", nn.BatchNorm2d(out_channels))

        ''' activation '''
        if activation=="relu":
            self.conv2d.add_module("relu", nn.ReLU())
        elif activation=="lrelu":
            self.conv2d.add_module("lrelu", nn.LeakyReLU())


    def forward(self, input):
        # input shape should be : batch x channel x height x width
        output = self.conv2d(input)
        return output



# 1-dimensional convolutional layer
# in the order of conv -> norm -> activation
class Conv1d_layer(nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size, \
                                    stride=1, \
                                    padding="SAME", dilation=1, bias=True, \
                                    norm="batch", activation="relu", \
                                    mode="conv"):
        super(Conv1d_layer, self).__init__()
        
        self.conv1d = nn.Sequential()

        ''' padding '''
        if mode=="deconv":
            padding = int(dilation * (kernel_size-1) / 2)
            out_padding = 0 if stride==1 else 1
        elif mode=="conv" or "alias_free" in mode:
            if padding == "SAME":
                pad = int((kernel_size-1) * dilation)
                l_pad = int(pad//2)
                r_pad = pad - l_pad
                padding_area = (l_pad, r_pad)
            elif padding == "VALID":
                padding_area = (0, 0)
            else:
                pass

        ''' convolutional layer '''
        if mode=="deconv":
            self.conv1d.add_module("deconv1d", nn.ConvTranspose1d(in_channels, out_channels, kernel_size, \
                                                            stride=stride, padding=padding, output_padding=out_padding, \
                                                            dilation=dilation, \
                                                            bias=bias))
        elif mode=="conv":
            self.conv1d.add_module(f"{mode}1d_pad", nn.ReflectionPad1d(padding_area))
            self.conv1d.add_module(f"{mode}1d", nn.Conv1d(in_channels, out_channels, kernel_size, \
                                                            stride=stride, padding=0, \
                                                            dilation=dilation, \
                                                            bias=bias))
        elif "alias_free" in mode:
            if "up" in mode:
                up_factor = stride * 2
                down_factor = 2
            elif "down" in mode:
                up_factor = 2
                down_factor = stride * 2
            else:
                raise ValueError("choose alias-free method : 'up' or 'down'")
            # procedure : conv -> upsample -> lrelu -> low-pass filter -> downsample
            # the torchaudio.transforms.Resample's default resampling_method is 'sinc_interpolation' which performs low-pass filter during the process
            # details at https://pytorch.org/audio/stable/transforms.html
            self.conv1d.add_module(f"{mode}1d_pad", nn.ReflectionPad1d(padding_area))
            self.conv1d.add_module(f"{mode}1d", nn.Conv1d(in_channels, out_channels, kernel_size, \
                                                            stride=1, padding=0, \
                                                            dilation=dilation, \
                                                            bias=bias))
            self.conv1d.add_module(f"{mode}upsample", torchaudio.transforms.Resample(orig_freq=1, new_freq=up_factor))
            self.conv1d.add_module(f"{mode}lrelu", nn.LeakyReLU())
            self.conv1d.add_module(f"{mode}downsample", torchaudio.transforms.Resample(orig_freq=down_factor, new_freq=1))

        ''' normalization '''
        if norm=="batch":
            self.conv1d.add_module("batch_norm", nn.BatchNorm1d(out_channels))
            # self.conv1d.add_module("batch_norm", nn.SyncBatchNorm(out_channels))

        ''' activation '''
        if 'alias_free' not in mode:
            if activation=="relu":
                self.conv1d.add_module("relu", nn.ReLU())
            elif activation=="lrelu":
                self.conv1d.add_module("lrelu", nn.LeakyReLU())


    def forward(self, input):
        # input shape should be : batch x channel x height x width
        output = self.conv1d(input)
        return output



# Residual Block
    # the input is added after the first convolutional layer, retaining its original channel size
    # therefore, the second convolutional layer's output channel may differ
class Res_ConvBlock(nn.Module):
    def __init__(self, dimension, \
                        in_channels, out_channels, \
                        kernel_size, \
                        stride=1, padding="SAME", \
                        dilation=1, \
                        bias=True, \
                        norm="batch", \
                        activation="relu", last_activation="relu", \
                        mode="conv"):
        super(Res_ConvBlock, self).__init__()

        if dimension==1:
            self.conv1 = Conv1d_layer(in_channels, in_channels, kernel_size, padding=padding, dilation=dilation, bias=bias, norm=norm, activation=activation)
            self.conv2 = Conv1d_layer(in_channels, out_channels, kernel_size, stride=stride, padding=padding, dilation=dilation, bias=bias, norm=norm, activation=last_activation, mode=mode)
        elif dimension==2:
            self.conv1 = Conv2d_layer(in_channels, in_channels, kernel_size, padding=padding, dilation=dilation, bias=bias, norm=norm, activation=activation)
            self.conv2 = Conv2d_layer(in_channels, out_channels, kernel_size, stride=stride, padding=padding, dilation=dilation, bias=bias, norm=norm, activation=last_activation, mode=mode)


    def forward(self, input):
        c1_out = self.conv1(input) + input
        c2_out = self.conv2(c1_out)
        return c2_out



# Convoluaionl Block
    # consists of multiple (number of layer_num) convolutional layers
    # only the final convoluational layer outputs the desired 'out_channels'
class ConvBlock(nn.Module):
    def __init__(self, dimension, layer_num, \
                        in_channels, out_channels, \
                        kernel_size, \
                        stride=1, padding="SAME", \
                        dilation=1, \
                        bias=True, \
                        norm="batch", \
                        activation="relu", last_activation="relu", \
                        mode="conv"):
        super(ConvBlock, self).__init__()

        conv_block = []
        if dimension==1:
            for i in range(layer_num-1):
                conv_block.append(Conv1d_layer(in_channels, in_channels, kernel_size, padding=padding, dilation=dilation, bias=bias, norm=norm, activation=activation))
            conv_block.append(Conv1d_layer(in_channels, out_channels, kernel_size, stride=stride, padding=padding, dilation=dilation, bias=bias, norm=norm, activation=last_activation, mode=mode))
        elif dimension==2:
            for i in range(layer_num-1):
                conv_block.append(Conv2d_layer(in_channels, in_channels, kernel_size, padding=padding, dilation=dilation, bias=bias, norm=norm, activation=activation))
            conv_block.append(Conv2d_layer(in_channels, out_channels, kernel_size, stride=stride, padding=padding, dilation=dilation, bias=bias, norm=norm, activation=last_activation, mode=mode))
        self.conv_block = nn.Sequential(*conv_block)


    def forward(self, input):
        return self.conv_block(input)


# Feature-wise Linear Modulation
class FiLM(nn.Module):
    def __init__(self, condition_len=2048, feature_len=1024):
        super(FiLM, self).__init__()
        self.film_fc = nn.Linear(condition_len, feature_len*2)
        self.feat_len = feature_len


    def forward(self, feature, condition, sefa=None):
        # SeFA
        if sefa:
            weight = self.film_fc.weight.T
            weight = weight / torch.linalg.norm((weight+1e-07), dim=0, keepdims=True)
            eigen_values, eigen_vectors = torch.eig(torch.matmul(weight, weight.T), eigenvectors=True)

            ####### custom parameters #######
            chosen_eig_idx = sefa[0]
            alpha = eigen_values[chosen_eig_idx][0] * sefa[1]
            #################################

            An = eigen_vectors[chosen_eig_idx].repeat(condition.shape[0], 1)
            alpha_An = alpha * An

            condition += alpha_An

        film_factor = self.film_fc(condition).unsqueeze(-1)
        r, b = torch.split(film_factor, self.feat_len, dim=1)
        return r*feature + b