ITO-Master / modules /data_normalization.py
jhtonyKoo's picture
modify fx norm
fe2ddc5
"""
Implementation of the 'audio effects chain normalization'
"""
import numpy as np
import scipy
import soundfile as sf
import pyloudnorm
from glob import glob
import os
import sys
currentdir = os.path.dirname(os.path.realpath(__file__))
sys.path.append(currentdir)
from utils_data_normalization import *
from normalization_imager import *
'''
Audio Effects Chain Normalization
process: normalizes input stems according to given precomputed features
'''
class Audio_Effects_Normalizer:
def __init__(self, precomputed_feature_path=None, \
STEMS=['drums', 'bass', 'other', 'vocals'], \
EFFECTS=['eq', 'compression', 'imager', 'loudness'], \
audio_extension='wav'):
self.STEMS = STEMS # Stems to be normalized
self.EFFECTS = EFFECTS # Effects to be normalized, order matters
self.audio_extension = audio_extension
self.precomputed_feature_path = precomputed_feature_path
# Audio settings
self.SR = 44100
self.SUBTYPE = 'PCM_16'
# General Settings
self.FFT_SIZE = 2**16
self.HOP_LENGTH = self.FFT_SIZE//4
# Loudness
self.NTAPS = 1001
self.LUFS = -30
self.MIN_DB = -40 # Min amplitude to apply EQ matching
# Compressor
self.COMP_USE_EXPANDER = False
self.COMP_PEAK_NORM = -10.0
self.COMP_TRUE_PEAK = False
self.COMP_PERCENTILE = 75 # features_mean (v1) was done with 25
self.COMP_MIN_TH = -40
self.COMP_MAX_RATIO = 20
comp_settings = {key:{} for key in self.STEMS}
for key in comp_settings:
if key=='vocals':
comp_settings[key]['attack'] = 7.5
comp_settings[key]['release'] = 400.0
comp_settings[key]['ratio'] = 4
comp_settings[key]['n_mels'] = 128
elif key=='drums':
comp_settings[key]['attack'] = 10.0
comp_settings[key]['release'] = 180.0
comp_settings[key]['ratio'] = 6
comp_settings[key]['n_mels'] = 128
elif key=='bass':
comp_settings[key]['attack'] = 10.0
comp_settings[key]['release'] = 500.0
comp_settings[key]['ratio'] = 5
comp_settings[key]['n_mels'] = 16
elif key=='other' or key=='mixture':
comp_settings[key]['attack'] = 15.0
comp_settings[key]['release'] = 666.0
comp_settings[key]['ratio'] = 4
comp_settings[key]['n_mels'] = 128
self.comp_settings = comp_settings
if precomputed_feature_path!=None and os.path.isfile(precomputed_feature_path):
# Load Pre-computed Audio Effects Features
features_mean = np.load(precomputed_feature_path, allow_pickle='TRUE')[()]
self.features_mean = self.smooth_feature(features_mean)
# compute audio effects' mean feature values
def compute_mean(self, base_dir_path, save_feat=True, single_file=False):
audio_path_dict = {}
for cur_stem in self.STEMS:
# if single_file=True, base_dir_path = the target file path
audio_path_dict[cur_stem] = [base_dir_path] if single_file else glob(os.path.join(base_dir_path, "**", f"{cur_stem}.{self.audio_extension}"), recursive=True)
features_dict = {}
features_mean = {}
for effect in self.EFFECTS:
features_dict[effect] = {key:[] for key in self.STEMS}
features_mean[effect] = {key:[] for key in self.STEMS}
stems_names = self.STEMS.copy()
for effect in self.EFFECTS:
print(f'{effect} ...')
j=0
for key in self.STEMS:
print(f'{key} ...')
i = []
for i_, p_ in enumerate(audio_path_dict[key]):
i.append(i_)
i = np.asarray(i) + j
j += len(i)
features_ = []
for cur_i, cur_audio_path in enumerate(audio_path_dict[key]):
print(f'getting {effect} features for {key}- stem {cur_i} of {len(audio_path_dict[key])-1} {cur_audio_path}')
features_.append(self.get_norm_feature(cur_audio_path, cur_i, effect, key))
features_dict[effect][key] = features_
print(effect, key, len(features_dict[effect][key]))
s = np.asarray(features_dict[effect][key])
s = np.mean(s, axis=0)
features_mean[effect][key] = s
if effect == 'eq':
assert len(s)==1+self.FFT_SIZE//2, len(s)
elif effect == 'compression':
assert len(s)==2, len(s)
elif effect == 'panning':
assert len(s)==1+self.FFT_SIZE//2, len(s)
elif effect == 'loudness':
assert len(s)==1, len(s)
if effect == 'eq':
if key in ['other', 'vocals', 'mixture']:
f = 401
else:
f = 151
features_mean[effect][key] = scipy.signal.savgol_filter(features_mean[effect][key],
f, 1, mode='mirror')
elif effect == 'panning':
features_mean[effect][key] = scipy.signal.savgol_filter(features_mean[effect][key],
501, 1, mode='mirror')
if save_feat:
np.save(self.precomputed_feature_path, features_mean)
self.features_mean = self.smooth_feature(features_mean)
print('---feature mean computation completed---')
return self.features_mean
def get_norm_feature(self, path, i, effect, stem):
if isinstance(path, str):
audio, fs = sf.read(path)
assert(fs == self.SR)
else:
audio = path
fs = self.SR
all_zeros = not np.any(audio)
if all_zeros == False:
audio = np.pad(audio, ((self.FFT_SIZE, self.FFT_SIZE), (0, 0)), mode='constant')
max_db = amp_to_db(np.max(np.abs(audio)))
if max_db > self.MIN_DB:
if effect == 'loudness':
meter = pyln.Meter(self.SR)
loudness = meter.integrated_loudness(audio)
return [loudness]
elif effect == 'eq':
audio = lufs_normalize(audio, self.SR, self.LUFS, log=False)
audio_spec = compute_stft(audio,
self.HOP_LENGTH,
self.FFT_SIZE,
np.sqrt(np.hanning(self.FFT_SIZE+1)[:-1]))
audio_spec = np.abs(audio_spec)
audio_spec_avg = np.mean(audio_spec, axis=(0,1))
return audio_spec_avg
elif effect == 'panning':
phi = get_SPS(audio,
n_fft=self.FFT_SIZE,
hop_length=self.HOP_LENGTH,
smooth=False,
frames=False)
return(phi[1])
elif effect == 'compression':
x = pyln.normalize.peak(audio, self.COMP_PEAK_NORM)
peak_std = get_mean_peak(x,
sr=self.SR,
true_peak=self.COMP_TRUE_PEAK,
percentile=self.COMP_PERCENTILE,
n_mels=self.comp_settings[stem]['n_mels'])
if peak_std is not None:
return peak_std
else:
return None
elif effect == 'imager':
mid, side = lr_to_ms(audio[:,0], audio[:,1])
return print_balance(mid, side, verbose=False)
else:
print(f'{path} is silence...')
return None
else:
print(f'{path} is only zeros...')
return None
# normalize current audio input with the order of designed audio FX
def normalize_audio(self, audio, src):
assert src in self.STEMS
normalized_audio = audio
for cur_effect in self.EFFECTS:
normalized_audio = self.normalize_audio_per_effect(normalized_audio, src=src, effect=cur_effect)
return normalized_audio
# normalize current audio input with current targeted audio FX
def normalize_audio_per_effect(self, audio, src, effect):
audio = audio.astype(dtype=np.float32)
audio_track = np.pad(audio, ((self.FFT_SIZE, self.FFT_SIZE), (0, 0)), mode='constant')
assert len(audio_track.shape) == 2 # Always expects two dimensions
if audio_track.shape[1] == 1: # Converts mono to stereo with repeated channels
audio_track = np.repeat(audio_track, 2, axis=-1)
output_audio = audio_track.copy()
max_db = amp_to_db(np.max(np.abs(output_audio)))
if max_db > self.MIN_DB:
if effect == 'eq':
# normalize each channel
for ch in range(audio_track.shape[1]):
audio_eq_matched = get_eq_matching(output_audio[:, ch],
self.features_mean[effect][src],
sr=self.SR,
n_fft=self.FFT_SIZE,
hop_length=self.HOP_LENGTH,
min_db=self.MIN_DB,
ntaps=self.NTAPS,
lufs=self.LUFS)
np.copyto(output_audio[:,ch], audio_eq_matched)
elif effect == 'compression':
assert(len(self.features_mean[effect][src])==2)
# normalize each channel
for ch in range(audio_track.shape[1]):
try:
audio_comp_matched = get_comp_matching(output_audio[:, ch],
self.features_mean[effect][src][0],
self.features_mean[effect][src][1],
self.comp_settings[src]['ratio'],
self.comp_settings[src]['attack'],
self.comp_settings[src]['release'],
sr=self.SR,
min_db=self.MIN_DB,
min_th=self.COMP_MIN_TH,
comp_peak_norm=self.COMP_PEAK_NORM,
max_ratio=self.COMP_MAX_RATIO,
n_mels=self.comp_settings[src]['n_mels'],
true_peak=self.COMP_TRUE_PEAK,
percentile=self.COMP_PERCENTILE,
expander=self.COMP_USE_EXPANDER)
np.copyto(output_audio[:,ch], audio_comp_matched[:, 0])
except:
break
elif effect == 'loudness':
output_audio = lufs_normalize(output_audio, self.SR, self.features_mean[effect][src], log=False)
elif effect == 'imager':
# threshold of applying Haas effects
mono_threshold = 0.99 if src=='bass' else 0.975
audio_imager_matched = normalize_imager(output_audio, \
target_side_mid_bal=self.features_mean[effect][src][0], \
mono_threshold=mono_threshold, \
sr=self.SR)
np.copyto(output_audio, audio_imager_matched)
output_audio = output_audio[self.FFT_SIZE:self.FFT_SIZE+audio.shape[0]]
return output_audio
def smooth_feature(self, feature_dict_):
for effect in self.EFFECTS:
for key in self.STEMS:
if effect == 'eq':
if key in ['other', 'vocals', 'mixture']:
f = 401
else:
f = 151
feature_dict_[effect][key] = scipy.signal.savgol_filter(feature_dict_[effect][key],
f, 1, mode='mirror')
elif effect == 'panning':
feature_dict_[effect][key] = scipy.signal.savgol_filter(feature_dict_[effect][key],
501, 1, mode='mirror')
return feature_dict_
# compute "normalization" based on a single sample
def feature_matching(self, src_aud_path, ref_aud_path):
# compute mean features from reference audio
mean_feature = self.compute_mean(ref_aud_path, save_feat=False, single_file=True)
print(mean_feature)
src_aud, sr = sf.read(src_aud_path)
normalized_audio = self.normalize_audio(src_aud, 'mixture')
return normalized_audio
def lufs_normalize(x, sr, lufs, log=True):
# measure the loudness first
meter = pyloudnorm.Meter(sr) # create BS.1770 meter
loudness = meter.integrated_loudness(x+1e-10)
if log:
print("original loudness: ", loudness," max value: ", np.max(np.abs(x)))
loudness_normalized_audio = pyloudnorm.normalize.loudness(x, loudness, lufs)
maxabs_amp = np.maximum(1.0, 1e-6 + np.max(np.abs(loudness_normalized_audio)))
loudness_normalized_audio /= maxabs_amp
loudness = meter.integrated_loudness(loudness_normalized_audio)
if log:
print("new loudness: ", loudness," max value: ", np.max(np.abs(loudness_normalized_audio)))
return loudness_normalized_audio