Spaces:
Running
Running
""" | |
Implementation of the normalization process of stereo-imaging and panning effects | |
""" | |
import numpy as np | |
import sys | |
import os | |
currentdir = os.path.dirname(os.path.realpath(__file__)) | |
sys.path.append(currentdir) | |
from common_audioeffects import AugmentationChain, Haas | |
''' | |
### normalization algorithm for stereo imaging and panning effects ### | |
process : | |
1. inputs 2-channeled audio | |
2. apply Haas effects if the input audio is almost mono | |
3. normalize mid-side channels according to target precomputed feature value | |
4. normalize left-right channels 50-50 | |
5. normalize mid-side channels again | |
''' | |
def normalize_imager(data, \ | |
target_side_mid_bal=0.9, \ | |
mono_threshold=0.95, \ | |
sr=44100, \ | |
eps=1e-04, \ | |
verbose=False): | |
# to mid-side channels | |
mid, side = lr_to_ms(data[:,0], data[:,1]) | |
if verbose: | |
print_balance(data[:,0], data[:,1]) | |
print_balance(mid, side) | |
print() | |
# apply mid-side weights according to energy | |
mid_e, side_e = np.sum(mid**2), np.sum(side**2) | |
total_e = mid_e + side_e | |
# apply haas effect to almost-mono signal | |
if mid_e/total_e > mono_threshold: | |
aug_chain = AugmentationChain(fxs=[(Haas(sample_rate=sr), 1, True)]) | |
data = aug_chain([data])[0] | |
mid, side = lr_to_ms(data[:,0], data[:,1]) | |
if verbose: | |
print_balance(data[:,0], data[:,1]) | |
print_balance(mid, side) | |
print() | |
# normalize mid-side channels (stereo imaging) | |
new_mid, new_side = process_balance(mid, side, tgt_e1_bal=target_side_mid_bal, eps=eps) | |
left, right = ms_to_lr(new_mid, new_side) | |
imaged = np.stack([left, right], 1) | |
if verbose: | |
print_balance(new_mid, new_side) | |
print_balance(left, right) | |
print() | |
# normalize panning to have the balance of left-right channels 50-50 | |
left, right = process_balance(left, right, tgt_e1_bal=0.5, eps=eps) | |
mid, side = lr_to_ms(left, right) | |
if verbose: | |
print_balance(mid, side) | |
print_balance(left, right) | |
print() | |
# normalize again mid-side channels (stereo imaging) | |
new_mid, new_side = process_balance(mid, side, tgt_e1_bal=target_side_mid_bal, eps=eps) | |
left, right = ms_to_lr(new_mid, new_side) | |
imaged = np.stack([left, right], 1) | |
if verbose: | |
print_balance(new_mid, new_side) | |
print_balance(left, right) | |
print() | |
return imaged | |
# balance out 2 input data's energy according to given balance | |
# tgt_e1_bal range = [0.0, 1.0] | |
# tgt_e2_bal = 1.0 - tgt_e1_bal_range | |
def process_balance(data_1, data_2, tgt_e1_bal=0.5, eps=1e-04): | |
e_1, e_2 = np.sum(data_1**2), np.sum(data_2**2) | |
total_e = e_1 + e_2 | |
tgt_1_gain = np.sqrt(tgt_e1_bal * total_e / (e_1 + eps)) | |
new_data_1 = data_1 * tgt_1_gain | |
new_e_1 = e_1 * (tgt_1_gain ** 2) | |
left_e_1 = total_e - new_e_1 | |
tgt_2_gain = np.sqrt(left_e_1 / (e_2 + 1e-3)) | |
new_data_2 = data_2 * tgt_2_gain | |
return new_data_1, new_data_2 | |
# left-right channeled signal to mid-side signal | |
def lr_to_ms(left, right): | |
mid = left + right | |
side = left - right | |
return mid, side | |
# mid-side channeled signal to left-right signal | |
def ms_to_lr(mid, side): | |
left = (mid + side) / 2 | |
right = (mid - side) / 2 | |
return left, right | |
# print energy balance of 2 inputs | |
def print_balance(data_1, data_2, verbose=True): | |
e_1, e_2 = np.sum(data_1**2), np.sum(data_2**2) | |
total_e = e_1 + e_2 | |
if verbose: | |
print(total_e, e_1/total_e, e_2/total_e) | |
return e_1/total_e, e_2/total_e | |