Spaces:
Running
Running
modify app
Browse files- app.py +17 -3
- inference.py +0 -6
app.py
CHANGED
@@ -9,12 +9,21 @@ from config import args
|
|
9 |
|
10 |
mastering_transfer = MasteringStyleTransfer(args)
|
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
def process_audio(input_audio, reference_audio):
|
13 |
-
print("before style transfer")
|
14 |
output_audio, predicted_params, _, _, _, sr = mastering_transfer.process_audio(
|
15 |
input_audio, reference_audio, reference_audio, {}, False
|
16 |
)
|
17 |
-
print("style transfer completed")
|
18 |
|
19 |
param_output = mastering_transfer.get_param_output_string(predicted_params)
|
20 |
|
@@ -22,13 +31,15 @@ def process_audio(input_audio, reference_audio):
|
|
22 |
if isinstance(output_audio, torch.Tensor):
|
23 |
output_audio = output_audio.cpu().numpy()
|
24 |
|
|
|
|
|
|
|
25 |
# Ensure the audio is in the correct shape (samples, channels)
|
26 |
if output_audio.ndim == 1:
|
27 |
output_audio = output_audio.reshape(-1, 1)
|
28 |
elif output_audio.ndim > 2:
|
29 |
output_audio = output_audio.squeeze()
|
30 |
|
31 |
-
print("returning result")
|
32 |
return (sr, output_audio), param_output
|
33 |
|
34 |
def perform_ito(input_audio, reference_audio, ito_reference_audio, num_steps, optimizer, learning_rate, af_weights):
|
@@ -60,6 +71,9 @@ def perform_ito(input_audio, reference_audio, ito_reference_audio, num_steps, op
|
|
60 |
if isinstance(current_output, torch.Tensor):
|
61 |
current_output = current_output.cpu().numpy()
|
62 |
|
|
|
|
|
|
|
63 |
# Ensure the audio is in the correct shape (samples, channels)
|
64 |
if current_output.ndim == 1:
|
65 |
current_output = current_output.reshape(-1, 1)
|
|
|
9 |
|
10 |
mastering_transfer = MasteringStyleTransfer(args)
|
11 |
|
12 |
+
def denormalize_audio(audio, dtype=np.int16):
|
13 |
+
"""
|
14 |
+
Denormalize the audio from the range [-1, 1] to the full range of the specified dtype.
|
15 |
+
"""
|
16 |
+
if dtype == np.int16:
|
17 |
+
return (audio * 32767).astype(np.int16)
|
18 |
+
elif dtype == np.float32:
|
19 |
+
return audio.astype(np.float32)
|
20 |
+
else:
|
21 |
+
raise ValueError("Unsupported dtype. Use np.int16 or np.float32.")
|
22 |
+
|
23 |
def process_audio(input_audio, reference_audio):
|
|
|
24 |
output_audio, predicted_params, _, _, _, sr = mastering_transfer.process_audio(
|
25 |
input_audio, reference_audio, reference_audio, {}, False
|
26 |
)
|
|
|
27 |
|
28 |
param_output = mastering_transfer.get_param_output_string(predicted_params)
|
29 |
|
|
|
31 |
if isinstance(output_audio, torch.Tensor):
|
32 |
output_audio = output_audio.cpu().numpy()
|
33 |
|
34 |
+
# Denormalize the audio to int16
|
35 |
+
output_audio = denormalize_audio(output_audio, dtype=np.int16)
|
36 |
+
|
37 |
# Ensure the audio is in the correct shape (samples, channels)
|
38 |
if output_audio.ndim == 1:
|
39 |
output_audio = output_audio.reshape(-1, 1)
|
40 |
elif output_audio.ndim > 2:
|
41 |
output_audio = output_audio.squeeze()
|
42 |
|
|
|
43 |
return (sr, output_audio), param_output
|
44 |
|
45 |
def perform_ito(input_audio, reference_audio, ito_reference_audio, num_steps, optimizer, learning_rate, af_weights):
|
|
|
71 |
if isinstance(current_output, torch.Tensor):
|
72 |
current_output = current_output.cpu().numpy()
|
73 |
|
74 |
+
# Denormalize the audio to int16
|
75 |
+
current_output = denormalize_audio(current_output, dtype=np.int16)
|
76 |
+
|
77 |
# Ensure the audio is in the correct shape (samples, channels)
|
78 |
if current_output.ndim == 1:
|
79 |
current_output = current_output.reshape(-1, 1)
|
inference.py
CHANGED
@@ -155,20 +155,14 @@ class MasteringStyleTransfer:
|
|
155 |
return data_tensor.to(self.device)
|
156 |
|
157 |
def process_audio(self, input_audio, reference_audio, ito_reference_audio, params, perform_ito, log_ito=False):
|
158 |
-
print('run preprocess')
|
159 |
input_tensor = self.preprocess_audio(input_audio, self.args.sample_rate)
|
160 |
reference_tensor = self.preprocess_audio(reference_audio, self.args.sample_rate)
|
161 |
ito_reference_tensor = self.preprocess_audio(ito_reference_audio, self.args.sample_rate)
|
162 |
-
print('preprocess done')
|
163 |
|
164 |
reference_feature = self.get_reference_embedding(reference_tensor)
|
165 |
|
166 |
-
print('reference extracted')
|
167 |
-
|
168 |
output_audio, predicted_params = self.mastering_style_transfer(input_tensor, reference_feature)
|
169 |
|
170 |
-
print('style transfer forward done')
|
171 |
-
|
172 |
if perform_ito:
|
173 |
ito_log = []
|
174 |
for i in range(self.args.max_iter_ito):
|
|
|
155 |
return data_tensor.to(self.device)
|
156 |
|
157 |
def process_audio(self, input_audio, reference_audio, ito_reference_audio, params, perform_ito, log_ito=False):
|
|
|
158 |
input_tensor = self.preprocess_audio(input_audio, self.args.sample_rate)
|
159 |
reference_tensor = self.preprocess_audio(reference_audio, self.args.sample_rate)
|
160 |
ito_reference_tensor = self.preprocess_audio(ito_reference_audio, self.args.sample_rate)
|
|
|
161 |
|
162 |
reference_feature = self.get_reference_embedding(reference_tensor)
|
163 |
|
|
|
|
|
164 |
output_audio, predicted_params = self.mastering_style_transfer(input_tensor, reference_feature)
|
165 |
|
|
|
|
|
166 |
if perform_ito:
|
167 |
ito_log = []
|
168 |
for i in range(self.args.max_iter_ito):
|