Spaces:
Running
Running
modify app
Browse files- app.py +8 -1
- inference.py +3 -49
app.py
CHANGED
@@ -161,8 +161,10 @@ with gr.Blocks() as demo:
|
|
161 |
title="ITO Loss Curve",
|
162 |
x_title="Step",
|
163 |
y_title="Loss",
|
164 |
-
height=
|
165 |
width=600,
|
|
|
|
|
166 |
)
|
167 |
ito_log = gr.Textbox(label="ITO Log", lines=10)
|
168 |
|
@@ -187,6 +189,11 @@ with gr.Blocks() as demo:
|
|
187 |
final_log = log
|
188 |
loss_df = loss_data
|
189 |
|
|
|
|
|
|
|
|
|
|
|
190 |
return final_audio, final_params, final_log, loss_df
|
191 |
|
192 |
ito_button.click(
|
|
|
161 |
title="ITO Loss Curve",
|
162 |
x_title="Step",
|
163 |
y_title="Loss",
|
164 |
+
height=300,
|
165 |
width=600,
|
166 |
+
x_series_axis=gr.LinePlot.XAxisType.INTEGER,
|
167 |
+
y_lim=[None, None],
|
168 |
)
|
169 |
ito_log = gr.Textbox(label="ITO Log", lines=10)
|
170 |
|
|
|
189 |
final_log = log
|
190 |
loss_df = loss_data
|
191 |
|
192 |
+
# Update y_lim based on the actual min and max values
|
193 |
+
y_min = loss_df['loss'].min()
|
194 |
+
y_max = loss_df['loss'].max()
|
195 |
+
ito_loss_plot.update(y_lim=[y_min, y_max])
|
196 |
+
|
197 |
return final_audio, final_params, final_log, loss_df
|
198 |
|
199 |
ito_button.click(
|
inference.py
CHANGED
@@ -109,7 +109,7 @@ class MasteringStyleTransfer:
|
|
109 |
if step == 0:
|
110 |
initial_params = current_params
|
111 |
top_5_diff = self.get_top_n_diff_string(initial_params, current_params, top_n=5)
|
112 |
-
log_entry = f"Step {step + 1}
|
113 |
|
114 |
if divergence_counter >= 10:
|
115 |
print(f"Optimization stopped early due to divergence at step {step}")
|
@@ -166,52 +166,6 @@ class MasteringStyleTransfer:
|
|
166 |
|
167 |
return output_audio, predicted_params, self.args.sample_rate
|
168 |
|
169 |
-
def print_param_difference(self, initial_params, ito_params):
|
170 |
-
all_diffs = []
|
171 |
-
|
172 |
-
print("\nAll parameter differences:")
|
173 |
-
for fx_name in initial_params.keys():
|
174 |
-
print(f"\n{fx_name.upper()}:")
|
175 |
-
if isinstance(initial_params[fx_name], dict):
|
176 |
-
for param_name in initial_params[fx_name].keys():
|
177 |
-
initial_value = initial_params[fx_name][param_name]
|
178 |
-
ito_value = ito_params[fx_name][param_name]
|
179 |
-
|
180 |
-
# Calculate normalized difference
|
181 |
-
param_range = self.mastering_converter.fx_processors[fx_name].param_ranges[param_name]
|
182 |
-
normalized_diff = abs((ito_value - initial_value) / (param_range[1] - param_range[0]))
|
183 |
-
|
184 |
-
all_diffs.append((fx_name, param_name, initial_value, ito_value, normalized_diff))
|
185 |
-
|
186 |
-
print(f" {param_name}:")
|
187 |
-
print(f" Initial: {initial_value.item():.4f}")
|
188 |
-
print(f" ITO: {ito_value.item():.4f}")
|
189 |
-
print(f" Normalized Diff: {normalized_diff.item():.4f}")
|
190 |
-
else:
|
191 |
-
initial_value = initial_params[fx_name]
|
192 |
-
ito_value = ito_params[fx_name]
|
193 |
-
|
194 |
-
# For 'imager', assume range is 0 to 1
|
195 |
-
normalized_diff = abs(ito_value - initial_value)
|
196 |
-
|
197 |
-
all_diffs.append((fx_name, 'width', initial_value, ito_value, normalized_diff))
|
198 |
-
|
199 |
-
print(f" width:")
|
200 |
-
print(f" Initial: {initial_value.item():.4f}")
|
201 |
-
print(f" ITO: {ito_value.item():.4f}")
|
202 |
-
print(f" Normalized Diff: {normalized_diff.item():.4f}")
|
203 |
-
|
204 |
-
# Sort differences by normalized difference and get top 10
|
205 |
-
top_diffs = sorted(all_diffs, key=lambda x: x[4], reverse=True)[:10]
|
206 |
-
|
207 |
-
print("\nTop 10 parameter differences (sorted by normalized difference):")
|
208 |
-
for fx_name, param_name, initial_value, ito_value, normalized_diff in top_diffs:
|
209 |
-
print(f"{fx_name.upper()} - {param_name}:")
|
210 |
-
print(f" Initial: {initial_value.item():.4f}")
|
211 |
-
print(f" ITO: {ito_value.item():.4f}")
|
212 |
-
print(f" Normalized Diff: {normalized_diff.item():.4f}")
|
213 |
-
print()
|
214 |
-
|
215 |
def print_predicted_params(self, predicted_params):
|
216 |
if predicted_params is None:
|
217 |
print("No predicted parameters available.")
|
@@ -273,9 +227,9 @@ class MasteringStyleTransfer:
|
|
273 |
|
274 |
top_diffs = sorted(all_diffs, key=lambda x: x[4], reverse=True)[:top_n]
|
275 |
|
276 |
-
output = [f"Top {top_n} parameter differences (initial / ITO / normalized diff):"]
|
277 |
for fx_name, param_name, initial_value, ito_value, normalized_diff in top_diffs:
|
278 |
-
output.append(f"{fx_name.upper()} - {param_name}: {initial_value:.3f} / {ito_value:.3f} / {normalized_diff:.3f}")
|
279 |
|
280 |
return "\n".join(output)
|
281 |
|
|
|
109 |
if step == 0:
|
110 |
initial_params = current_params
|
111 |
top_5_diff = self.get_top_n_diff_string(initial_params, current_params, top_n=5)
|
112 |
+
log_entry = f"Step {step + 1}\n Loss: {total_loss.item():.4f}\n{top_5_diff}\n"
|
113 |
|
114 |
if divergence_counter >= 10:
|
115 |
print(f"Optimization stopped early due to divergence at step {step}")
|
|
|
166 |
|
167 |
return output_audio, predicted_params, self.args.sample_rate
|
168 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
169 |
def print_predicted_params(self, predicted_params):
|
170 |
if predicted_params is None:
|
171 |
print("No predicted parameters available.")
|
|
|
227 |
|
228 |
top_diffs = sorted(all_diffs, key=lambda x: x[4], reverse=True)[:top_n]
|
229 |
|
230 |
+
output = [f" Top {top_n} parameter differences (initial / ITO / normalized diff):"]
|
231 |
for fx_name, param_name, initial_value, ito_value, normalized_diff in top_diffs:
|
232 |
+
output.append(f" {fx_name.upper()} - {param_name}: {initial_value:.3f} / {ito_value:.3f} / {normalized_diff:.3f}")
|
233 |
|
234 |
return "\n".join(output)
|
235 |
|