import math import torch import warnings # https://github.com/pytorch/audio/blob/d9942bae249329bd8c8bf5c92f0f108595fcb84f/torchaudio/functional/functional.py#L495 def _create_triangular_filterbank( all_freqs: torch.Tensor, f_pts: torch.Tensor, ) -> torch.Tensor: """Create a triangular filter bank. Args: all_freqs (Tensor): STFT freq points of size (`n_freqs`). f_pts (Tensor): Filter mid points of size (`n_filter`). Returns: fb (Tensor): The filter bank of size (`n_freqs`, `n_filter`). """ # Adopted from Librosa # calculate the difference between each filter mid point and each stft freq point in hertz f_diff = f_pts[1:] - f_pts[:-1] # (n_filter + 1) slopes = f_pts.unsqueeze(0) - all_freqs.unsqueeze(1) # (n_freqs, n_filter + 2) # create overlapping triangles zero = torch.zeros(1) down_slopes = (-1.0 * slopes[:, :-2]) / f_diff[:-1] # (n_freqs, n_filter) up_slopes = slopes[:, 2:] / f_diff[1:] # (n_freqs, n_filter) fb = torch.max(zero, torch.min(down_slopes, up_slopes)) return fb # https://github.com/pytorch/audio/blob/d9942bae249329bd8c8bf5c92f0f108595fcb84f/torchaudio/prototype/functional/functional.py#L6 def _hz_to_bark(freqs: float, bark_scale: str = "traunmuller") -> float: r"""Convert Hz to Barks. Args: freqs (float): Frequencies in Hz bark_scale (str, optional): Scale to use: ``traunmuller``, ``schroeder`` or ``wang``. (Default: ``traunmuller``) Returns: barks (float): Frequency in Barks """ if bark_scale not in ["schroeder", "traunmuller", "wang"]: raise ValueError( 'bark_scale should be one of "schroeder", "traunmuller" or "wang".' ) if bark_scale == "wang": return 6.0 * math.asinh(freqs / 600.0) elif bark_scale == "schroeder": return 7.0 * math.asinh(freqs / 650.0) # Traunmuller Bark scale barks = ((26.81 * freqs) / (1960.0 + freqs)) - 0.53 # Bark value correction if barks < 2: barks += 0.15 * (2 - barks) elif barks > 20.1: barks += 0.22 * (barks - 20.1) return barks def _bark_to_hz(barks: torch.Tensor, bark_scale: str = "traunmuller") -> torch.Tensor: """Convert bark bin numbers to frequencies. Args: barks (torch.Tensor): Bark frequencies bark_scale (str, optional): Scale to use: ``traunmuller``,``schroeder`` or ``wang``. (Default: ``traunmuller``) Returns: freqs (torch.Tensor): Barks converted in Hz """ if bark_scale not in ["schroeder", "traunmuller", "wang"]: raise ValueError( 'bark_scale should be one of "traunmuller", "schroeder" or "wang".' ) if bark_scale == "wang": return 600.0 * torch.sinh(barks / 6.0) elif bark_scale == "schroeder": return 650.0 * torch.sinh(barks / 7.0) # Bark value correction if any(barks < 2): idx = barks < 2 barks[idx] = (barks[idx] - 0.3) / 0.85 elif any(barks > 20.1): idx = barks > 20.1 barks[idx] = (barks[idx] + 4.422) / 1.22 # Traunmuller Bark scale freqs = 1960 * ((barks + 0.53) / (26.28 - barks)) return freqs def _hz_to_octs(freqs, tuning=0.0, bins_per_octave=12): a440 = 440.0 * 2.0 ** (tuning / bins_per_octave) return torch.log2(freqs / (a440 / 16)) def barkscale_fbanks( n_freqs: int, f_min: float, f_max: float, n_barks: int, sample_rate: int, bark_scale: str = "traunmuller", ) -> torch.Tensor: r"""Create a frequency bin conversion matrix. .. devices:: CPU .. properties:: TorchScript .. image:: https://download.pytorch.org/torchaudio/doc-assets/bark_fbanks.png :alt: Visualization of generated filter bank Args: n_freqs (int): Number of frequencies to highlight/apply f_min (float): Minimum frequency (Hz) f_max (float): Maximum frequency (Hz) n_barks (int): Number of mel filterbanks sample_rate (int): Sample rate of the audio waveform bark_scale (str, optional): Scale to use: ``traunmuller``,``schroeder`` or ``wang``. (Default: ``traunmuller``) Returns: torch.Tensor: Triangular filter banks (fb matrix) of size (``n_freqs``, ``n_barks``) meaning number of frequencies to highlight/apply to x the number of filterbanks. Each column is a filterbank so that assuming there is a matrix A of size (..., ``n_freqs``), the applied result would be ``A * barkscale_fbanks(A.size(-1), ...)``. """ # freq bins all_freqs = torch.linspace(0, sample_rate // 2, n_freqs) # calculate bark freq bins m_min = _hz_to_bark(f_min, bark_scale=bark_scale) m_max = _hz_to_bark(f_max, bark_scale=bark_scale) m_pts = torch.linspace(m_min, m_max, n_barks + 2) f_pts = _bark_to_hz(m_pts, bark_scale=bark_scale) # create filterbank fb = _create_triangular_filterbank(all_freqs, f_pts) if (fb.max(dim=0).values == 0.0).any(): warnings.warn( "At least one bark filterbank has all zero values. " f"The value for `n_barks` ({n_barks}) may be set too high. " f"Or, the value for `n_freqs` ({n_freqs}) may be set too low." ) return fb