""" Implementation of the normalization process of stereo-imaging and panning effects """ import numpy as np import sys import os currentdir = os.path.dirname(os.path.realpath(__file__)) sys.path.append(currentdir) from common_audioeffects import AugmentationChain, Haas ''' ### normalization algorithm for stereo imaging and panning effects ### process : 1. inputs 2-channeled audio 2. apply Haas effects if the input audio is almost mono 3. normalize mid-side channels according to target precomputed feature value 4. normalize left-right channels 50-50 5. normalize mid-side channels again ''' def normalize_imager(data, \ target_side_mid_bal=0.9, \ mono_threshold=0.95, \ sr=44100, \ eps=1e-04, \ verbose=False): # to mid-side channels mid, side = lr_to_ms(data[:,0], data[:,1]) if verbose: print_balance(data[:,0], data[:,1]) print_balance(mid, side) print() # apply mid-side weights according to energy mid_e, side_e = np.sum(mid**2), np.sum(side**2) total_e = mid_e + side_e # apply haas effect to almost-mono signal if mid_e/total_e > mono_threshold: aug_chain = AugmentationChain(fxs=[(Haas(sample_rate=sr), 1, True)]) data = aug_chain([data])[0] mid, side = lr_to_ms(data[:,0], data[:,1]) if verbose: print_balance(data[:,0], data[:,1]) print_balance(mid, side) print() # normalize mid-side channels (stereo imaging) new_mid, new_side = process_balance(mid, side, tgt_e1_bal=target_side_mid_bal, eps=eps) left, right = ms_to_lr(new_mid, new_side) imaged = np.stack([left, right], 1) if verbose: print_balance(new_mid, new_side) print_balance(left, right) print() # normalize panning to have the balance of left-right channels 50-50 left, right = process_balance(left, right, tgt_e1_bal=0.5, eps=eps) mid, side = lr_to_ms(left, right) if verbose: print_balance(mid, side) print_balance(left, right) print() # normalize again mid-side channels (stereo imaging) new_mid, new_side = process_balance(mid, side, tgt_e1_bal=target_side_mid_bal, eps=eps) left, right = ms_to_lr(new_mid, new_side) imaged = np.stack([left, right], 1) if verbose: print_balance(new_mid, new_side) print_balance(left, right) print() return imaged # balance out 2 input data's energy according to given balance # tgt_e1_bal range = [0.0, 1.0] # tgt_e2_bal = 1.0 - tgt_e1_bal_range def process_balance(data_1, data_2, tgt_e1_bal=0.5, eps=1e-04): e_1, e_2 = np.sum(data_1**2), np.sum(data_2**2) total_e = e_1 + e_2 tgt_1_gain = np.sqrt(tgt_e1_bal * total_e / (e_1 + eps)) new_data_1 = data_1 * tgt_1_gain new_e_1 = e_1 * (tgt_1_gain ** 2) left_e_1 = total_e - new_e_1 tgt_2_gain = np.sqrt(left_e_1 / (e_2 + 1e-3)) new_data_2 = data_2 * tgt_2_gain return new_data_1, new_data_2 # left-right channeled signal to mid-side signal def lr_to_ms(left, right): mid = left + right side = left - right return mid, side # mid-side channeled signal to left-right signal def ms_to_lr(mid, side): left = (mid + side) / 2 right = (mid - side) / 2 return left, right # print energy balance of 2 inputs def print_balance(data_1, data_2, verbose=True): e_1, e_2 = np.sum(data_1**2), np.sum(data_2**2) total_e = e_1 + e_2 if verbose: print(total_e, e_1/total_e, e_2/total_e) return e_1/total_e, e_2/total_e