Spaces:
Paused
Paused
from functools import partial | |
from PIL import Image | |
import numpy as np | |
import gradio as gr | |
import torch | |
import os | |
import fire | |
from omegaconf import OmegaConf | |
from SyncDreamer.ldm.models.diffusion.sync_dreamer import SyncDDIMSampler, SyncMultiviewDiffusion | |
from SyncDreamer.ldm.util import add_margin, instantiate_from_config | |
from sam_utils import sam_init, sam_out_nosave | |
from SyncDreamer.ldm.util import instantiate_from_config, prepare_inputs | |
import argparse | |
import cv2 | |
from transformers import pipeline | |
from diffusers.utils import load_image, make_image_grid | |
from diffusers import UniPCMultistepScheduler | |
from pipeline_controlnet_sync import StableDiffusionControlNetPipeline | |
from controlnet_sync import ControlNetModelSync | |
_TITLE = '''ControlNet + SyncDreamer''' | |
_DESCRIPTION = ''' | |
Given a single-view image and select a target azimuth, ControlNet + SyncDreamer is able to generate the target view. | |
This HF app is modified from [SyncDreamer HF app](https://huggingface.co/spaces/liuyuan-pal/SyncDreamer). The difference is that I added ControlNet on top of SyncDreamer. | |
In addition, the elevations of both input and output images are assumed to be 30 degrees. | |
''' | |
_USER_GUIDE0 = "Step1: Please upload an image in the block above (or choose an example shown in the left)." | |
_USER_GUIDE2 = "Step2: Please choose a **Target azimuth** and click **Run Generation**. The **Target azimuth** is the azimuth of the output image relative to the input image in clockwise. This costs about 45s." | |
_USER_GUIDE3 = "Generated output image of the target view is shown below! (You may adjust the **Crop size** and **Target azimuth** to get another result!)" | |
others = '''**Step 1**. Select "Crop size" and click "Crop it". ==> The foreground object is centered and resized. </br>''' | |
deployed = True | |
if deployed: | |
print(f"Is CUDA available: {torch.cuda.is_available()}") | |
print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}") | |
class BackgroundRemoval: | |
def __init__(self, device='cuda'): | |
from carvekit.api.high import HiInterface | |
self.interface = HiInterface( | |
object_type="object", # Can be "object" or "hairs-like". | |
batch_size_seg=5, | |
batch_size_matting=1, | |
device=device, | |
seg_mask_size=640, # Use 640 for Tracer B7 and 320 for U2Net | |
matting_mask_size=2048, | |
trimap_prob_threshold=231, | |
trimap_dilation=30, | |
trimap_erosion_iters=5, | |
fp16=True, | |
) | |
def __call__(self, image): | |
image = self.interface([image])[0] | |
return image | |
def resize_inputs(image_input, crop_size): | |
if image_input is None: return None | |
alpha_np = np.asarray(image_input)[:, :, 3] | |
coords = np.stack(np.nonzero(alpha_np), 1)[:, (1, 0)] | |
min_x, min_y = np.min(coords, 0) | |
max_x, max_y = np.max(coords, 0) | |
ref_img_ = image_input.crop((min_x, min_y, max_x, max_y)) | |
h, w = ref_img_.height, ref_img_.width | |
scale = crop_size / max(h, w) | |
h_, w_ = int(scale * h), int(scale * w) | |
ref_img_ = ref_img_.resize((w_, h_), resample=Image.BICUBIC) | |
results = add_margin(ref_img_, size=256) | |
return results | |
def generate(pipe, image_input, azimuth): | |
target_index = round(azimuth % 360 / 22.5) | |
output = pipe(conditioning_image=image_input) | |
return output[target_index] | |
def sam_predict(predictor, removal, raw_im): | |
if raw_im is None: return None | |
if deployed: | |
raw_im.thumbnail([512, 512], Image.Resampling.LANCZOS) | |
image_nobg = removal(raw_im.convert('RGB')) | |
arr = np.asarray(image_nobg)[:, :, -1] | |
x_nonzero = np.nonzero(arr.sum(axis=0)) | |
y_nonzero = np.nonzero(arr.sum(axis=1)) | |
x_min = int(x_nonzero[0].min()) | |
y_min = int(y_nonzero[0].min()) | |
x_max = int(x_nonzero[0].max()) | |
y_max = int(y_nonzero[0].max()) | |
image_nobg.thumbnail([512, 512], Image.Resampling.LANCZOS) | |
image_sam = sam_out_nosave(predictor, image_nobg.convert("RGB"), (x_min, y_min, x_max, y_max)) | |
image_sam = np.asarray(image_sam, np.float32) / 255 | |
out_mask = image_sam[:, :, 3:] | |
out_rgb = image_sam[:, :, :3] * out_mask + 1 - out_mask | |
out_img = (np.concatenate([out_rgb, out_mask], 2) * 255).astype(np.uint8) | |
image_sam = Image.fromarray(out_img, mode='RGBA') | |
torch.cuda.empty_cache() | |
return image_sam | |
else: | |
return raw_im | |
def load_model(cfg,ckpt,strict=True): | |
config = OmegaConf.load(cfg) | |
model = instantiate_from_config(config.model) | |
print(f'loading model from {ckpt} ...') | |
ckpt = torch.load(ckpt,map_location='cuda') | |
model.load_state_dict(ckpt['state_dict'],strict=strict) | |
model = model.cuda().eval() | |
return model | |
def run_demo(): | |
if deployed: | |
controlnet = ControlNetModelSync.from_pretrained('controlnet_ckpt', torch_dtype=torch.float32, use_safetensors=True) | |
cfg = 'SyncDreamer/configs/syncdreamer.yaml' | |
dreamer = load_model(cfg, 'SyncDreamer/ckpt/syncdreamer-pretrain.ckpt', strict=True) | |
controlnet.to('cuda', dtype=torch.float32) | |
pipe = StableDiffusionControlNetPipeline.from_pretrained( | |
controlnet=controlnet, dreamer=dreamer, torch_dtype=torch.float32, use_safetensors=True | |
) | |
pipe.to('cuda', dtype=torch.float32) | |
mask_predictor = sam_init() | |
removal = BackgroundRemoval() | |
else: | |
mask_predictor = None | |
removal = None | |
controlnet = None | |
dreamer = None | |
pipe = None | |
# NOTE: Examples must match inputs | |
examples_full = [ | |
['hf_demo/examples/fox.png',200], | |
['hf_demo/examples/monkey.png',200], | |
['hf_demo/examples/cat.png',200], | |
['hf_demo/examples/crab.png',200], | |
['hf_demo/examples/elephant.png',200], | |
['hf_demo/examples/flower.png',200], | |
['hf_demo/examples/forest.png',200], | |
['hf_demo/examples/teapot.png',200], | |
['hf_demo/examples/basket.png',200], | |
] | |
image_block = gr.Image(type='pil', image_mode='RGBA', height=256, label='Input image', tool=None, interactive=True) | |
azimuth = gr.Slider(0, 360, 90, step=22.5, label='Target azimuth', interactive=True) | |
crop_size = gr.Slider(120, 240, 200, step=10, label='Crop size', interactive=True) | |
# Compose demo layout & data flow. | |
with gr.Blocks(title=_TITLE, css="hf_demo/style.css") as demo: | |
with gr.Row(): | |
with gr.Column(scale=1): | |
gr.Markdown('# ' + _TITLE) | |
gr.Markdown(_DESCRIPTION) | |
with gr.Row(variant='panel'): | |
with gr.Column(scale=1.2): | |
gr.Examples( | |
examples=examples_full, # NOTE: elements must match inputs list! | |
inputs=[image_block, crop_size], | |
outputs=[image_block, crop_size], | |
cache_examples=False, | |
label='Examples (click one of the images below to start)', | |
examples_per_page=5, | |
) | |
with gr.Column(scale=0.8): | |
image_block.render() | |
guide_text = gr.Markdown(_USER_GUIDE0, visible=True) | |
fig0 = gr.Image(value=Image.open('assets/crop_size.jpg'), type='pil', image_mode='RGB', height=256, show_label=False, tool=None, interactive=False) | |
with gr.Column(scale=0.8): | |
sam_block = gr.Image(type='pil', image_mode='RGBA', label="SAM output", height=256, interactive=False) | |
crop_size.render() | |
fig1 = gr.Image(value=Image.open('assets/azimuth.jpg'), type='pil', image_mode='RGB', height=256, show_label=False, tool=None, interactive=False) | |
with gr.Column(scale=0.8): | |
input_block = gr.Image(type='pil', image_mode='RGBA', label="Input to ControlNet + SyncDreamer", height=256, interactive=False) | |
azimuth.render() | |
with gr.Accordion('Advanced options', open=False): | |
seed = gr.Number(6033, label='Random seed', interactive=True) | |
run_btn = gr.Button('Run generation', variant='primary', interactive=True) | |
output_block = gr.Image(type='pil', image_mode='RGB', label="Output of ControlNet + SyncDreamer", height=256, interactive=False) | |
def update_guide2(text, im): | |
if im is None: | |
return _USER_GUIDE0 | |
else: | |
return text | |
update_guide = lambda GUIDE_TEXT: gr.update(value=GUIDE_TEXT) | |
image_block.clear(fn=partial(update_guide, _USER_GUIDE0), outputs=[guide_text], queue=False) | |
image_block.change(fn=partial(sam_predict, mask_predictor, removal), inputs=[image_block], outputs=[sam_block], queue=True) \ | |
.success(fn=resize_inputs, inputs=[sam_block, crop_size], outputs=[input_block], queue=True)\ | |
.success(fn=partial(update_guide2, _USER_GUIDE2), inputs=[image_block], outputs=[guide_text], queue=False)\ | |
crop_size.change(fn=resize_inputs, inputs=[sam_block, crop_size], outputs=[input_block], queue=True)\ | |
.success(fn=partial(update_guide, _USER_GUIDE2), outputs=[guide_text], queue=False) | |
run_btn.click(partial(generate, pipe), inputs=[input_block, azimuth], outputs=[output_block], queue=True)\ | |
.success(fn=partial(update_guide, _USER_GUIDE3), outputs=[guide_text], queue=False) | |
demo.queue().launch(share=False, max_threads=80) # auth=("admin", os.environ['PASSWD']) | |
if __name__=="__main__": | |
fire.Fire(run_demo) |