nekoshadow commited on
Commit
02afb14
1 Parent(s): 7bfbade

First commit

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +2 -0
  2. .gitignore +5 -0
  3. README.md +6 -6
  4. app.py +261 -0
  5. assets/crop_size.jpg +0 -0
  6. assets/elevation.jpg +0 -0
  7. assets/teaser.jpg +0 -0
  8. ckpt/new.txt +0 -0
  9. configs/nerf.yaml +25 -0
  10. configs/neus.yaml +26 -0
  11. configs/syncdreamer-train.yaml +63 -0
  12. configs/syncdreamer.yaml +45 -0
  13. detection_test.py +56 -0
  14. examples/monkey.png +0 -0
  15. generate.py +62 -0
  16. hf_demo/examples/basket.png +3 -0
  17. hf_demo/examples/cat.png +3 -0
  18. hf_demo/examples/crab.png +3 -0
  19. hf_demo/examples/elephant.png +3 -0
  20. hf_demo/examples/flower.png +3 -0
  21. hf_demo/examples/forest.png +3 -0
  22. hf_demo/examples/monkey.png +3 -0
  23. hf_demo/examples/teapot.png +3 -0
  24. hf_demo/style.css +33 -0
  25. ldm/base_utils.py +158 -0
  26. ldm/data/__init__.py +0 -0
  27. ldm/data/base.py +40 -0
  28. ldm/data/coco.py +253 -0
  29. ldm/data/dummy.py +34 -0
  30. ldm/data/imagenet.py +394 -0
  31. ldm/data/inpainting/__init__.py +0 -0
  32. ldm/data/inpainting/synthetic_mask.py +166 -0
  33. ldm/data/laion.py +537 -0
  34. ldm/data/lsun.py +92 -0
  35. ldm/data/nerf_like.py +165 -0
  36. ldm/data/simple.py +526 -0
  37. ldm/data/sync_dreamer.py +132 -0
  38. ldm/lr_scheduler.py +98 -0
  39. ldm/models/autoencoder.py +443 -0
  40. ldm/models/diffusion/__init__.py +0 -0
  41. ldm/models/diffusion/sync_dreamer.py +661 -0
  42. ldm/models/diffusion/sync_dreamer_attention.py +142 -0
  43. ldm/models/diffusion/sync_dreamer_network.py +186 -0
  44. ldm/models/diffusion/sync_dreamer_utils.py +103 -0
  45. ldm/modules/attention.py +336 -0
  46. ldm/modules/diffusionmodules/__init__.py +0 -0
  47. ldm/modules/diffusionmodules/model.py +835 -0
  48. ldm/modules/diffusionmodules/openaimodel.py +996 -0
  49. ldm/modules/diffusionmodules/util.py +267 -0
  50. ldm/modules/distributions/__init__.py +0 -0
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ ckpt/* filter=lfs diff=lfs merge=lfs -text
37
+ hf_demo/examples/* filter=lfs diff=lfs merge=lfs -text
.gitignore ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ .idea
2
+ training_examples
3
+ objaverse_examples
4
+ ldm/__pycache__/
5
+ __pycache__/
README.md CHANGED
@@ -1,13 +1,13 @@
1
  ---
2
- title: Controlnet
3
- emoji: 👀
4
- colorFrom: yellow
5
- colorTo: green
6
  sdk: gradio
7
- sdk_version: 4.16.0
8
  app_file: app.py
9
  pinned: false
10
- license: mit
11
  ---
12
 
13
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
1
  ---
2
+ title: SyncDreamer
3
+ emoji: 🚀
4
+ colorFrom: indigo
5
+ colorTo: pink
6
  sdk: gradio
7
+ sdk_version: 3.43.2
8
  app_file: app.py
9
  pinned: false
10
+ license: cc-by-sa-3.0
11
  ---
12
 
13
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
app.py ADDED
@@ -0,0 +1,261 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from functools import partial
2
+
3
+ from PIL import Image
4
+ import numpy as np
5
+ import gradio as gr
6
+ import torch
7
+ import os
8
+ import fire
9
+ from omegaconf import OmegaConf
10
+
11
+ from ldm.models.diffusion.sync_dreamer import SyncDDIMSampler, SyncMultiviewDiffusion
12
+ from ldm.util import add_margin, instantiate_from_config
13
+ from sam_utils import sam_init, sam_out_nosave
14
+
15
+ import torch
16
+ _TITLE = '''SyncDreamer: Generating Multiview-consistent Images from a Single-view Image'''
17
+ _DESCRIPTION = '''
18
+ <div>
19
+ <a style="display:inline-block" href="https://liuyuan-pal.github.io/SyncDreamer/"><img src="https://img.shields.io/badge/SyncDremer-Homepage-blue"></a>
20
+ <a style="display:inline-block; margin-left: .5em" href="https://arxiv.org/abs/2309.03453"><img src="https://img.shields.io/badge/2309.03453-f9f7f7?logo="></a>
21
+ <a style="display:inline-block; margin-left: .5em" href='https://github.com/liuyuan-pal/SyncDreamer'><img src='https://img.shields.io/github/stars/liuyuan-pal/SyncDreamer?style=social' /></a>
22
+ </div>
23
+ Given a single-view image, SyncDreamer is able to generate multiview-consistent images, which enables direct 3D reconstruction with NeuS or NeRF without SDS loss </br>
24
+
25
+ Procedure: </br>
26
+ **Step 1**. Upload an image or select an example. ==> The foreground is masked out by SAM and we crop it as inputs. </br>
27
+ **Step 2**. Select "Elevation angle "and click "Run generation". ==> Generate multiview images. The **Elevation angle** is the elevation of the input image. (This costs about 30s.) </br>
28
+ You may adjust the **Crop size** and **Elevation angle** to get a better result! <br>
29
+ To reconstruct a NeRF or a 3D mesh from the generated images, please refer to our [github repository](https://github.com/liuyuan-pal/SyncDreamer). <br>
30
+ We have heavily borrowed codes from [One-2-3-45](https://huggingface.co/spaces/One-2-3-45/One-2-3-45), which is also an amazing single-view reconstruction method.
31
+ '''
32
+ _USER_GUIDE0 = "Step1: Please upload an image in the block above (or choose an example shown in the left)."
33
+ # _USER_GUIDE1 = "Step1: Please select a **Crop size** and click **Crop it**."
34
+ _USER_GUIDE2 = "Step2: Please choose a **Elevation angle** and click **Run Generate**. The **Elevation angle** is the elevation of the input image. This costs about 30s."
35
+ _USER_GUIDE3 = "Generated multiview images are shown below! (You may adjust the **Crop size** and **Elevation angle** to get a better result!)"
36
+
37
+ others = '''**Step 1**. Select "Crop size" and click "Crop it". ==> The foreground object is centered and resized. </br>'''
38
+
39
+ deployed = True
40
+
41
+ if deployed:
42
+ print(f"Is CUDA available: {torch.cuda.is_available()}")
43
+ print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")
44
+
45
+
46
+ class BackgroundRemoval:
47
+ def __init__(self, device='cuda'):
48
+ from carvekit.api.high import HiInterface
49
+ self.interface = HiInterface(
50
+ object_type="object", # Can be "object" or "hairs-like".
51
+ batch_size_seg=5,
52
+ batch_size_matting=1,
53
+ device=device,
54
+ seg_mask_size=640, # Use 640 for Tracer B7 and 320 for U2Net
55
+ matting_mask_size=2048,
56
+ trimap_prob_threshold=231,
57
+ trimap_dilation=30,
58
+ trimap_erosion_iters=5,
59
+ fp16=True,
60
+ )
61
+
62
+ @torch.no_grad()
63
+ def __call__(self, image):
64
+ # image: [H, W, 3] array in [0, 255].
65
+ image = self.interface([image])[0]
66
+ return image
67
+
68
+ def resize_inputs(image_input, crop_size):
69
+ if image_input is None: return None
70
+ alpha_np = np.asarray(image_input)[:, :, 3]
71
+ coords = np.stack(np.nonzero(alpha_np), 1)[:, (1, 0)]
72
+ min_x, min_y = np.min(coords, 0)
73
+ max_x, max_y = np.max(coords, 0)
74
+ ref_img_ = image_input.crop((min_x, min_y, max_x, max_y))
75
+ h, w = ref_img_.height, ref_img_.width
76
+ scale = crop_size / max(h, w)
77
+ h_, w_ = int(scale * h), int(scale * w)
78
+ ref_img_ = ref_img_.resize((w_, h_), resample=Image.BICUBIC)
79
+ results = add_margin(ref_img_, size=256)
80
+ return results
81
+
82
+ def generate(model, sample_steps, batch_view_num, sample_num, cfg_scale, seed, image_input, elevation_input):
83
+ if deployed:
84
+ assert isinstance(model, SyncMultiviewDiffusion)
85
+ seed=int(seed)
86
+ torch.random.manual_seed(seed)
87
+ np.random.seed(seed)
88
+
89
+ # prepare data
90
+ image_input = np.asarray(image_input)
91
+ image_input = image_input.astype(np.float32) / 255.0
92
+ alpha_values = image_input[:,:, 3:]
93
+ image_input[:, :, :3] = alpha_values * image_input[:,:, :3] + 1 - alpha_values # white background
94
+ image_input = image_input[:, :, :3] * 2.0 - 1.0
95
+ image_input = torch.from_numpy(image_input.astype(np.float32))
96
+ elevation_input = torch.from_numpy(np.asarray([np.deg2rad(elevation_input)], np.float32))
97
+ data = {"input_image": image_input, "input_elevation": elevation_input}
98
+ for k, v in data.items():
99
+ if deployed:
100
+ data[k] = v.unsqueeze(0).cuda()
101
+ else:
102
+ data[k] = v.unsqueeze(0)
103
+ data[k] = torch.repeat_interleave(data[k], sample_num, dim=0)
104
+
105
+ if deployed:
106
+ sampler = SyncDDIMSampler(model, sample_steps)
107
+ x_sample = model.sample(sampler, data, cfg_scale, batch_view_num)
108
+ else:
109
+ x_sample = torch.zeros(sample_num, 16, 3, 256, 256)
110
+
111
+ B, N, _, H, W = x_sample.shape
112
+ x_sample = (torch.clamp(x_sample,max=1.0,min=-1.0) + 1) * 0.5
113
+ x_sample = x_sample.permute(0,1,3,4,2).cpu().numpy() * 255
114
+ x_sample = x_sample.astype(np.uint8)
115
+
116
+ results = []
117
+ for bi in range(B):
118
+ results.append(np.concatenate([x_sample[bi,ni] for ni in range(N)], 1))
119
+ results = np.concatenate(results, 0)
120
+ return Image.fromarray(results)
121
+ else:
122
+ return Image.fromarray(np.zeros([sample_num*256,16*256,3],np.uint8))
123
+
124
+
125
+ def sam_predict(predictor, removal, raw_im):
126
+ if raw_im is None: return None
127
+ if deployed:
128
+ raw_im.thumbnail([512, 512], Image.Resampling.LANCZOS)
129
+ image_nobg = removal(raw_im.convert('RGB'))
130
+ arr = np.asarray(image_nobg)[:, :, -1]
131
+ x_nonzero = np.nonzero(arr.sum(axis=0))
132
+ y_nonzero = np.nonzero(arr.sum(axis=1))
133
+ x_min = int(x_nonzero[0].min())
134
+ y_min = int(y_nonzero[0].min())
135
+ x_max = int(x_nonzero[0].max())
136
+ y_max = int(y_nonzero[0].max())
137
+ # image_nobg.save('./nobg.png')
138
+
139
+ image_nobg.thumbnail([512, 512], Image.Resampling.LANCZOS)
140
+ image_sam = sam_out_nosave(predictor, image_nobg.convert("RGB"), (x_min, y_min, x_max, y_max))
141
+
142
+ # imsave('./mask.png', np.asarray(image_sam)[:,:,3]*255)
143
+ image_sam = np.asarray(image_sam, np.float32) / 255
144
+ out_mask = image_sam[:, :, 3:]
145
+ out_rgb = image_sam[:, :, :3] * out_mask + 1 - out_mask
146
+ out_img = (np.concatenate([out_rgb, out_mask], 2) * 255).astype(np.uint8)
147
+
148
+ image_sam = Image.fromarray(out_img, mode='RGBA')
149
+ # image_sam.save('./output.png')
150
+ torch.cuda.empty_cache()
151
+ return image_sam
152
+ else:
153
+ return raw_im
154
+
155
+ def run_demo():
156
+ # device = f"cuda:0" if torch.cuda.is_available() else "cpu"
157
+ # models = None # init_model(device, os.path.join(code_dir, ckpt))
158
+ cfg = 'configs/syncdreamer.yaml'
159
+ ckpt = 'ckpt/syncdreamer-pretrain.ckpt'
160
+ config = OmegaConf.load(cfg)
161
+ # model = None
162
+ if deployed:
163
+ model = instantiate_from_config(config.model)
164
+ print(f'loading model from {ckpt} ...')
165
+ ckpt = torch.load(ckpt,map_location='cpu')
166
+ model.load_state_dict(ckpt['state_dict'], strict=True)
167
+ model = model.cuda().eval()
168
+ del ckpt
169
+ mask_predictor = sam_init()
170
+ removal = BackgroundRemoval()
171
+ else:
172
+ model = None
173
+ mask_predictor = None
174
+ removal = None
175
+
176
+ # NOTE: Examples must match inputs
177
+ examples_full = [
178
+ ['hf_demo/examples/monkey.png',30,200],
179
+ ['hf_demo/examples/cat.png',30,200],
180
+ ['hf_demo/examples/crab.png',30,200],
181
+ ['hf_demo/examples/elephant.png',30,200],
182
+ ['hf_demo/examples/flower.png',0,200],
183
+ ['hf_demo/examples/forest.png',30,200],
184
+ ['hf_demo/examples/teapot.png',20,200],
185
+ ['hf_demo/examples/basket.png',30,200],
186
+ ]
187
+
188
+ image_block = gr.Image(type='pil', image_mode='RGBA', height=256, label='Input image', tool=None, interactive=True)
189
+ elevation = gr.Slider(-10, 40, 30, step=5, label='Elevation angle of the input image', interactive=True)
190
+ crop_size = gr.Slider(120, 240, 200, step=10, label='Crop size', interactive=True)
191
+
192
+ # Compose demo layout & data flow.
193
+ with gr.Blocks(title=_TITLE, css="hf_demo/style.css") as demo:
194
+ with gr.Row():
195
+ with gr.Column(scale=1):
196
+ gr.Markdown('# ' + _TITLE)
197
+ # with gr.Column(scale=0):
198
+ # gr.DuplicateButton(value='Duplicate Space for private use', elem_id='duplicate-button')
199
+ gr.Markdown(_DESCRIPTION)
200
+
201
+ with gr.Row(variant='panel'):
202
+ with gr.Column(scale=1.2):
203
+ gr.Examples(
204
+ examples=examples_full, # NOTE: elements must match inputs list!
205
+ inputs=[image_block, elevation, crop_size],
206
+ outputs=[image_block, elevation, crop_size],
207
+ cache_examples=False,
208
+ label='Examples (click one of the images below to start)',
209
+ examples_per_page=5,
210
+ )
211
+
212
+ with gr.Column(scale=0.8):
213
+ image_block.render()
214
+ guide_text = gr.Markdown(_USER_GUIDE0, visible=True)
215
+ fig0 = gr.Image(value=Image.open('assets/crop_size.jpg'), type='pil', image_mode='RGB', height=256, show_label=False, tool=None, interactive=False)
216
+
217
+
218
+ with gr.Column(scale=0.8):
219
+ sam_block = gr.Image(type='pil', image_mode='RGBA', label="SAM output", height=256, interactive=False)
220
+ crop_size.render()
221
+ # crop_btn = gr.Button('Crop it', variant='primary', interactive=True)
222
+ fig1 = gr.Image(value=Image.open('assets/elevation.jpg'), type='pil', image_mode='RGB', height=256, show_label=False, tool=None, interactive=False)
223
+
224
+ with gr.Column(scale=0.8):
225
+ input_block = gr.Image(type='pil', image_mode='RGBA', label="Input to SyncDreamer", height=256, interactive=False)
226
+ elevation.render()
227
+ with gr.Accordion('Advanced options', open=False):
228
+ cfg_scale = gr.Slider(1.0, 5.0, 2.0, step=0.1, label='Classifier free guidance', interactive=True)
229
+ sample_num = gr.Slider(1, 2, 1, step=1, label='Sample num', interactive=False, info='How many instance (16 images per instance)')
230
+ sample_steps = gr.Slider(10, 300, 50, step=10, label='Sample steps', interactive=False)
231
+ batch_view_num = gr.Slider(1, 16, 16, step=1, label='Batch num', interactive=True)
232
+ seed = gr.Number(6033, label='Random seed', interactive=True)
233
+ run_btn = gr.Button('Run generation', variant='primary', interactive=True)
234
+
235
+
236
+ output_block = gr.Image(type='pil', image_mode='RGB', label="Outputs of SyncDreamer", height=256, interactive=False)
237
+
238
+ def update_guide2(text, im):
239
+ if im is None:
240
+ return _USER_GUIDE0
241
+ else:
242
+ return text
243
+ update_guide = lambda GUIDE_TEXT: gr.update(value=GUIDE_TEXT)
244
+
245
+ image_block.clear(fn=partial(update_guide, _USER_GUIDE0), outputs=[guide_text], queue=False)
246
+ image_block.change(fn=partial(sam_predict, mask_predictor, removal), inputs=[image_block], outputs=[sam_block], queue=True) \
247
+ .success(fn=resize_inputs, inputs=[sam_block, crop_size], outputs=[input_block], queue=True)\
248
+ .success(fn=partial(update_guide2, _USER_GUIDE2), inputs=[image_block], outputs=[guide_text], queue=False)\
249
+
250
+ crop_size.change(fn=resize_inputs, inputs=[sam_block, crop_size], outputs=[input_block], queue=True)\
251
+ .success(fn=partial(update_guide, _USER_GUIDE2), outputs=[guide_text], queue=False)
252
+ # crop_btn.click(fn=resize_inputs, inputs=[sam_block, crop_size], outputs=[input_block], queue=False)\
253
+ # .success(fn=partial(update_guide, _USER_GUIDE2), outputs=[guide_text], queue=False)
254
+
255
+ run_btn.click(partial(generate, model), inputs=[sample_steps, batch_view_num, sample_num, cfg_scale, seed, input_block, elevation], outputs=[output_block], queue=True)\
256
+ .success(fn=partial(update_guide, _USER_GUIDE3), outputs=[guide_text], queue=False)
257
+
258
+ demo.queue().launch(share=False, max_threads=80) # auth=("admin", os.environ['PASSWD'])
259
+
260
+ if __name__=="__main__":
261
+ fire.Fire(run_demo)
assets/crop_size.jpg ADDED
assets/elevation.jpg ADDED
assets/teaser.jpg ADDED
ckpt/new.txt ADDED
File without changes
configs/nerf.yaml ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ base_lr: 1.0e-2
3
+ target: renderer.renderer.RendererTrainer
4
+ params:
5
+ total_steps: 2000
6
+ warm_up_steps: 100
7
+ train_batch_num: 40960
8
+ test_batch_num: 40960
9
+ renderer: ngp
10
+ cube_bound: 0.6
11
+ use_mask: true
12
+ lambda_rgb_loss: 0.5
13
+ lambda_mask_loss: 10.0
14
+
15
+ data:
16
+ target: renderer.dummy_dataset.DummyDataset
17
+ params: {}
18
+
19
+ callbacks:
20
+ save_interval: 5000
21
+
22
+ trainer:
23
+ val_check_interval: 500
24
+ max_steps: 2000
25
+
configs/neus.yaml ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ base_lr: 5.0e-4
3
+ target: renderer.renderer.RendererTrainer
4
+ params:
5
+ total_steps: 2000
6
+ warm_up_steps: 100
7
+ train_batch_num: 3584
8
+ train_batch_fg_num: 512
9
+ test_batch_num: 4096
10
+ use_mask: true
11
+ lambda_rgb_loss: 0.5
12
+ lambda_mask_loss: 1.0
13
+ lambda_eikonal_loss: 0.1
14
+ use_warm_up: true
15
+
16
+ data:
17
+ target: renderer.dummy_dataset.DummyDataset
18
+ params: {}
19
+
20
+ callbacks:
21
+ save_interval: 500
22
+
23
+ trainer:
24
+ val_check_interval: 500
25
+ max_steps: 2000
26
+
configs/syncdreamer-train.yaml ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ base_learning_rate: 5.0e-05
3
+ target: ldm.models.diffusion.sync_dreamer.SyncMultiviewDiffusion
4
+ params:
5
+ view_num: 16
6
+ image_size: 256
7
+ cfg_scale: 2.0
8
+ output_num: 8
9
+ batch_view_num: 4
10
+ finetune_unet: false
11
+ finetune_projection: false
12
+ drop_conditions: false
13
+ clip_image_encoder_path: ckpt/ViT-L-14.pt
14
+
15
+ scheduler_config: # 10000 warmup steps
16
+ target: ldm.lr_scheduler.LambdaLinearScheduler
17
+ params:
18
+ warm_up_steps: [ 100 ]
19
+ cycle_lengths: [ 100000 ]
20
+ f_start: [ 0.02 ]
21
+ f_max: [ 1.0 ]
22
+ f_min: [ 1.0 ]
23
+
24
+ unet_config:
25
+ target: ldm.models.diffusion.sync_dreamer_attention.DepthWiseAttention
26
+ params:
27
+ volume_dims: [64, 128, 256, 512]
28
+ image_size: 32
29
+ in_channels: 8
30
+ out_channels: 4
31
+ model_channels: 320
32
+ attention_resolutions: [ 4, 2, 1 ]
33
+ num_res_blocks: 2
34
+ channel_mult: [ 1, 2, 4, 4 ]
35
+ num_heads: 8
36
+ use_spatial_transformer: True
37
+ transformer_depth: 1
38
+ context_dim: 768
39
+ use_checkpoint: True
40
+ legacy: False
41
+
42
+ data:
43
+ target: ldm.data.sync_dreamer.SyncDreamerDataset
44
+ params:
45
+ target_dir: training_examples/target # renderings of target views
46
+ input_dir: training_examples/input # renderings of input views
47
+ uid_set_pkl: training_examples/uid_set.pkl # a list of uids
48
+ validation_dir: validation_set # directory of validation data
49
+ batch_size: 24 # batch size for a single gpu
50
+ num_workers: 8
51
+
52
+ lightning:
53
+ modelcheckpoint:
54
+ params:
55
+ every_n_train_steps: 1000 # we will save models every 1k steps
56
+ callbacks:
57
+ {}
58
+
59
+ trainer:
60
+ benchmark: True
61
+ val_check_interval: 1000 # we will run validation every 1k steps, the validation will output images to <log_dir>/<images>/val
62
+ num_sanity_val_steps: 0
63
+ check_val_every_n_epoch: null
configs/syncdreamer.yaml ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ base_learning_rate: 5.0e-05
3
+ target: ldm.models.diffusion.sync_dreamer.SyncMultiviewDiffusion
4
+ params:
5
+ view_num: 16
6
+ image_size: 256
7
+ cfg_scale: 2.0
8
+ output_num: 8
9
+ batch_view_num: 4
10
+ finetune_unet: false
11
+ finetune_projection: false
12
+ drop_conditions: false
13
+ clip_image_encoder_path: ckpt/ViT-L-14.pt
14
+
15
+ scheduler_config: # 10000 warmup steps
16
+ target: ldm.lr_scheduler.LambdaLinearScheduler
17
+ params:
18
+ warm_up_steps: [ 100 ]
19
+ cycle_lengths: [ 100000 ]
20
+ f_start: [ 0.02 ]
21
+ f_max: [ 1.0 ]
22
+ f_min: [ 1.0 ]
23
+
24
+ unet_config:
25
+ target: ldm.models.diffusion.sync_dreamer_attention.DepthWiseAttention
26
+ params:
27
+ volume_dims: [64, 128, 256, 512]
28
+ image_size: 32
29
+ in_channels: 8
30
+ out_channels: 4
31
+ model_channels: 320
32
+ attention_resolutions: [ 4, 2, 1 ]
33
+ num_res_blocks: 2
34
+ channel_mult: [ 1, 2, 4, 4 ]
35
+ num_heads: 8
36
+ use_spatial_transformer: True
37
+ transformer_depth: 1
38
+ context_dim: 768
39
+ use_checkpoint: True
40
+ legacy: False
41
+
42
+ data: {}
43
+
44
+ lightning:
45
+ trainer: {}
detection_test.py ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import numpy as np
3
+ from PIL import Image
4
+ from skimage.io import imsave
5
+ from sam_utils import sam_out_nosave, sam_init
6
+
7
+ class BackgroundRemoval:
8
+ def __init__(self, device='cuda'):
9
+ from carvekit.api.high import HiInterface
10
+ self.interface = HiInterface(
11
+ object_type="object", # Can be "object" or "hairs-like".
12
+ batch_size_seg=5,
13
+ batch_size_matting=1,
14
+ device=device,
15
+ seg_mask_size=640, # Use 640 for Tracer B7 and 320 for U2Net
16
+ matting_mask_size=2048,
17
+ trimap_prob_threshold=231,
18
+ trimap_dilation=30,
19
+ trimap_erosion_iters=5,
20
+ fp16=True,
21
+ )
22
+
23
+ @torch.no_grad()
24
+ def __call__(self, image):
25
+ # image: [H, W, 3] array in [0, 255].
26
+ # image = Image.fromarray(image)
27
+ image = self.interface([image])[0]
28
+ # image = np.array(image)
29
+ return image
30
+
31
+ raw_im = Image.open('hf_demo/examples/flower.png')
32
+ predictor = sam_init()
33
+
34
+ raw_im.thumbnail([512, 512], Image.Resampling.LANCZOS)
35
+ width, height = raw_im.size
36
+ image_nobg = BackgroundRemoval()(raw_im.convert('RGB'))
37
+ arr = np.asarray(image_nobg)[:, :, -1]
38
+ x_nonzero = np.nonzero(arr.sum(axis=0))
39
+ y_nonzero = np.nonzero(arr.sum(axis=1))
40
+ x_min = int(x_nonzero[0].min())
41
+ y_min = int(y_nonzero[0].min())
42
+ x_max = int(x_nonzero[0].max())
43
+ y_max = int(y_nonzero[0].max())
44
+ image_nobg.save('./nobg.png')
45
+
46
+ image_nobg.thumbnail([512, 512], Image.Resampling.LANCZOS)
47
+ image_sam = sam_out_nosave(predictor, image_nobg.convert("RGB"), (x_min, y_min, x_max, y_max))
48
+
49
+ imsave('./mask.png', np.asarray(image_sam)[:,:,3])
50
+ image_sam = np.asarray(image_sam, np.float32) / 255
51
+ out_mask = image_sam[:, :, 3:]
52
+ out_rgb = image_sam[:, :, :3] * out_mask + 1 - out_mask
53
+ out_img = (np.concatenate([out_rgb, out_mask], 2) * 255).astype(np.uint8)
54
+
55
+ image_sam = Image.fromarray(out_img, mode='RGBA')
56
+ image_sam.save('./output.png')
examples/monkey.png ADDED
generate.py ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ from pathlib import Path
3
+
4
+ import numpy as np
5
+ import torch
6
+ from omegaconf import OmegaConf
7
+ from skimage.io import imsave
8
+
9
+ from ldm.models.diffusion.sync_dreamer import SyncMultiviewDiffusion
10
+ from ldm.util import instantiate_from_config, prepare_inputs
11
+
12
+
13
+ def load_model(cfg,ckpt,strict=True):
14
+ config = OmegaConf.load(cfg)
15
+ model = instantiate_from_config(config.model)
16
+ print(f'loading model from {ckpt} ...')
17
+ ckpt = torch.load(ckpt,map_location='cpu')
18
+ model.load_state_dict(ckpt['state_dict'],strict=strict)
19
+ model = model.cuda().eval()
20
+ return model
21
+
22
+ def main():
23
+ parser = argparse.ArgumentParser()
24
+ parser.add_argument('--cfg',type=str, default='configs/syncdreamer.yaml')
25
+ parser.add_argument('--ckpt',type=str, default='ckpt/syncdreamer-step80k.ckpt')
26
+ parser.add_argument('--output', type=str, required=True)
27
+ parser.add_argument('--input', type=str, required=True)
28
+ parser.add_argument('--elevation', type=float, required=True)
29
+
30
+ parser.add_argument('--sample_num', type=int, default=4)
31
+ parser.add_argument('--crop_size', type=int, default=-1)
32
+ parser.add_argument('--cfg_scale', type=float, default=2.0)
33
+ parser.add_argument('--batch_view_num', type=int, default=8)
34
+ parser.add_argument('--seed', type=int, default=6033)
35
+ flags = parser.parse_args()
36
+
37
+ torch.random.manual_seed(flags.seed)
38
+ np.random.seed(flags.seed)
39
+
40
+ model = load_model(flags.cfg, flags.ckpt, strict=True)
41
+ assert isinstance(model, SyncMultiviewDiffusion)
42
+ Path(f'{flags.output}').mkdir(exist_ok=True, parents=True)
43
+
44
+ # prepare data
45
+ data = prepare_inputs(flags.input, flags.elevation, flags.crop_size)
46
+ for k, v in data.items():
47
+ data[k] = v.unsqueeze(0).cuda()
48
+ data[k] = torch.repeat_interleave(data[k], flags.sample_num, dim=0)
49
+ x_sample = model.sample(data, flags.cfg_scale, flags.batch_view_num)
50
+
51
+ B, N, _, H, W = x_sample.shape
52
+ x_sample = (torch.clamp(x_sample,max=1.0,min=-1.0) + 1) * 0.5
53
+ x_sample = x_sample.permute(0,1,3,4,2).cpu().numpy() * 255
54
+ x_sample = x_sample.astype(np.uint8)
55
+
56
+ for bi in range(B):
57
+ output_fn = Path(flags.output)/ f'{bi}.png'
58
+ imsave(output_fn, np.concatenate([x_sample[bi,ni] for ni in range(N)], 1))
59
+
60
+ if __name__=="__main__":
61
+ main()
62
+
hf_demo/examples/basket.png ADDED

Git LFS Details

  • SHA256: 9b7d07f44e1b223b5f3f6e97bf1e64198dbc63a020e860d1ffc177a5a42e7bd9
  • Pointer size: 130 Bytes
  • Size of remote file: 46.1 kB
hf_demo/examples/cat.png ADDED

Git LFS Details

  • SHA256: 7a2138057a0299987b7d8efde6e5d66d5f38c1666911ec4d60e414e33aac35a1
  • Pointer size: 130 Bytes
  • Size of remote file: 66.2 kB
hf_demo/examples/crab.png ADDED

Git LFS Details

  • SHA256: f97097523d5ce1d4544742b2970c5c7d482603d3ed3bd3937464c291a72946a8
  • Pointer size: 130 Bytes
  • Size of remote file: 60.3 kB
hf_demo/examples/elephant.png ADDED

Git LFS Details

  • SHA256: f9fbf42ae34c12cd94b17d1c540762039576c8321c82be7e589353a4d9cd1bd2
  • Pointer size: 130 Bytes
  • Size of remote file: 73.5 kB
hf_demo/examples/flower.png ADDED

Git LFS Details

  • SHA256: 91cd1effc2454a8c81c4b6d9b0ee46bdf12c2879b1ff8b44d2323976a792339a
  • Pointer size: 130 Bytes
  • Size of remote file: 26.4 kB
hf_demo/examples/forest.png ADDED

Git LFS Details

  • SHA256: 3439271a725e03e466f6064440d4dada3c51a22da00f8ce6d12fae744d8583db
  • Pointer size: 130 Bytes
  • Size of remote file: 65.3 kB
hf_demo/examples/monkey.png ADDED

Git LFS Details

  • SHA256: 688ae93e7ac3a7afa87ff1c25e29f50cdcfa6f0843f8599ba3a344319a2ff90f
  • Pointer size: 130 Bytes
  • Size of remote file: 62.8 kB
hf_demo/examples/teapot.png ADDED

Git LFS Details

  • SHA256: 368aa4fb501ba8c35f2650efa170fdf8d8e3435ccc6c07e218a6a607338451fd
  • Pointer size: 132 Bytes
  • Size of remote file: 1.09 MB
hf_demo/style.css ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #model-3d-out {
2
+ height: 400px;
3
+ }
4
+
5
+ #plot-out {
6
+ height: 450px;
7
+ }
8
+
9
+ #duplicate-button {
10
+ margin-left: auto;
11
+ color: #fff;
12
+ background: #1565c0;
13
+ }
14
+
15
+ .footer {
16
+ margin-bottom: 45px;
17
+ margin-top: 10px;
18
+ text-align: center;
19
+ border-bottom: 1px solid #e5e5e5;
20
+ }
21
+ .footer>p {
22
+ font-size: .8rem;
23
+ display: inline-block;
24
+ padding: 0 10px;
25
+ transform: translateY(15px);
26
+ background: white;
27
+ }
28
+ .dark .footer {
29
+ border-color: #303030;
30
+ }
31
+ .dark .footer>p {
32
+ background: #0b0f19;
33
+ }
ldm/base_utils.py ADDED
@@ -0,0 +1,158 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pickle
2
+ import numpy as np
3
+ import cv2
4
+ from skimage.io import imread
5
+
6
+
7
+ def save_pickle(data, pkl_path):
8
+ # os.system('mkdir -p {}'.format(os.path.dirname(pkl_path)))
9
+ with open(pkl_path, 'wb') as f:
10
+ pickle.dump(data, f)
11
+
12
+ def read_pickle(pkl_path):
13
+ with open(pkl_path, 'rb') as f:
14
+ return pickle.load(f)
15
+
16
+ def draw_epipolar_line(F, img0, img1, pt0, color):
17
+ h1,w1=img1.shape[:2]
18
+ hpt = np.asarray([pt0[0], pt0[1], 1], dtype=np.float32)[:, None]
19
+ l = F @ hpt
20
+ l = l[:, 0]
21
+ a, b, c = l[0], l[1], l[2]
22
+ pt1 = np.asarray([0, -c / b]).astype(np.int32)
23
+ pt2 = np.asarray([w1, (-a * w1 - c) / b]).astype(np.int32)
24
+
25
+ img0 = cv2.circle(img0, tuple(pt0.astype(np.int32)), 5, color, 2)
26
+ img1 = cv2.line(img1, tuple(pt1), tuple(pt2), color, 2)
27
+ return img0, img1
28
+
29
+ def draw_epipolar_lines(F, img0, img1,num=20):
30
+ img0,img1=img0.copy(),img1.copy()
31
+ h0, w0, _ = img0.shape
32
+ h1, w1, _ = img1.shape
33
+
34
+ for k in range(num):
35
+ color = np.random.randint(0, 255, [3], dtype=np.int32)
36
+ color = [int(c) for c in color]
37
+ pt = np.random.uniform(0, 1, 2)
38
+ pt[0] *= w0
39
+ pt[1] *= h0
40
+ pt = pt.astype(np.int32)
41
+ img0, img1 = draw_epipolar_line(F, img0, img1, pt, color)
42
+
43
+ return img0, img1
44
+
45
+ def compute_F(K1, K2, Rt0, Rt1=None):
46
+ if Rt1 is None:
47
+ R, t = Rt0[:,:3], Rt0[:,3:]
48
+ else:
49
+ Rt = compute_dR_dt(Rt0,Rt1)
50
+ R, t = Rt[:,:3], Rt[:,3:]
51
+ A = K1 @ R.T @ t # [3,1]
52
+ C = np.asarray([[0,-A[2,0],A[1,0]],
53
+ [A[2,0],0,-A[0,0]],
54
+ [-A[1,0],A[0,0],0]])
55
+ F = (np.linalg.inv(K2)).T @ R @ K1.T @ C
56
+ return F
57
+
58
+ def compute_dR_dt(Rt0, Rt1):
59
+ R0, t0 = Rt0[:,:3], Rt0[:,3:]
60
+ R1, t1 = Rt1[:,:3], Rt1[:,3:]
61
+ dR = np.dot(R1, R0.T)
62
+ dt = t1 - np.dot(dR, t0)
63
+ return np.concatenate([dR, dt], -1)
64
+
65
+ def concat_images(img0,img1,vert=False):
66
+ if not vert:
67
+ h0,h1=img0.shape[0],img1.shape[0],
68
+ if h0<h1: img0=cv2.copyMakeBorder(img0,0,h1-h0,0,0,borderType=cv2.BORDER_CONSTANT,value=0)
69
+ if h1<h0: img1=cv2.copyMakeBorder(img1,0,h0-h1,0,0,borderType=cv2.BORDER_CONSTANT,value=0)
70
+ img = np.concatenate([img0, img1], axis=1)
71
+ else:
72
+ w0,w1=img0.shape[1],img1.shape[1]
73
+ if w0<w1: img0=cv2.copyMakeBorder(img0,0,0,0,w1-w0,borderType=cv2.BORDER_CONSTANT,value=0)
74
+ if w1<w0: img1=cv2.copyMakeBorder(img1,0,0,0,w0-w1,borderType=cv2.BORDER_CONSTANT,value=0)
75
+ img = np.concatenate([img0, img1], axis=0)
76
+
77
+ return img
78
+
79
+ def concat_images_list(*args,vert=False):
80
+ if len(args)==1: return args[0]
81
+ img_out=args[0]
82
+ for img in args[1:]:
83
+ img_out=concat_images(img_out,img,vert)
84
+ return img_out
85
+
86
+
87
+ def pose_inverse(pose):
88
+ R = pose[:,:3].T
89
+ t = - R @ pose[:,3:]
90
+ return np.concatenate([R,t],-1)
91
+
92
+ def project_points(pts,RT,K):
93
+ pts = np.matmul(pts,RT[:,:3].transpose())+RT[:,3:].transpose()
94
+ pts = np.matmul(pts,K.transpose())
95
+ dpt = pts[:,2]
96
+ mask0 = (np.abs(dpt)<1e-4) & (np.abs(dpt)>0)
97
+ if np.sum(mask0)>0: dpt[mask0]=1e-4
98
+ mask1=(np.abs(dpt) > -1e-4) & (np.abs(dpt) < 0)
99
+ if np.sum(mask1)>0: dpt[mask1]=-1e-4
100
+ pts2d = pts[:,:2]/dpt[:,None]
101
+ return pts2d, dpt
102
+
103
+
104
+ def draw_keypoints(img, kps, colors=None, radius=2):
105
+ out_img=img.copy()
106
+ for pi, pt in enumerate(kps):
107
+ pt = np.round(pt).astype(np.int32)
108
+ if colors is not None:
109
+ color=[int(c) for c in colors[pi]]
110
+ cv2.circle(out_img, tuple(pt), radius, color, -1)
111
+ else:
112
+ cv2.circle(out_img, tuple(pt), radius, (0,255,0), -1)
113
+ return out_img
114
+
115
+
116
+ def output_points(fn,pts,colors=None):
117
+ with open(fn, 'w') as f:
118
+ for pi, pt in enumerate(pts):
119
+ f.write(f'{pt[0]:.6f} {pt[1]:.6f} {pt[2]:.6f} ')
120
+ if colors is not None:
121
+ f.write(f'{int(colors[pi,0])} {int(colors[pi,1])} {int(colors[pi,2])}')
122
+ f.write('\n')
123
+
124
+ DEPTH_MAX, DEPTH_MIN = 2.4, 0.6
125
+ DEPTH_VALID_MAX, DEPTH_VALID_MIN = 2.37, 0.63
126
+ def read_depth_objaverse(depth_fn):
127
+ depth = imread(depth_fn)
128
+ depth = depth.astype(np.float32) / 65535 * (DEPTH_MAX-DEPTH_MIN) + DEPTH_MIN
129
+ mask = (depth > DEPTH_VALID_MIN) & (depth < DEPTH_VALID_MAX)
130
+ return depth, mask
131
+
132
+
133
+ def mask_depth_to_pts(mask,depth,K,rgb=None):
134
+ hs,ws=np.nonzero(mask)
135
+ depth=depth[hs,ws]
136
+ pts=np.asarray([ws,hs,depth],np.float32).transpose()
137
+ pts[:,:2]*=pts[:,2:]
138
+ if rgb is not None:
139
+ return np.dot(pts, np.linalg.inv(K).transpose()), rgb[hs,ws]
140
+ else:
141
+ return np.dot(pts, np.linalg.inv(K).transpose())
142
+
143
+ def transform_points_pose(pts, pose):
144
+ R, t = pose[:, :3], pose[:, 3]
145
+ if len(pts.shape)==1:
146
+ return (R @ pts[:,None] + t[:,None])[:,0]
147
+ return pts @ R.T + t[None,:]
148
+
149
+ def pose_apply(pose,pts):
150
+ return transform_points_pose(pts, pose)
151
+
152
+ def downsample_gaussian_blur(img, ratio):
153
+ sigma = (1 / ratio) / 3
154
+ # ksize=np.ceil(2*sigma)
155
+ ksize = int(np.ceil(((sigma - 0.8) / 0.3 + 1) * 2 + 1))
156
+ ksize = ksize + 1 if ksize % 2 == 0 else ksize
157
+ img = cv2.GaussianBlur(img, (ksize, ksize), sigma, borderType=cv2.BORDER_REFLECT101)
158
+ return img
ldm/data/__init__.py ADDED
File without changes
ldm/data/base.py ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import numpy as np
3
+ from abc import abstractmethod
4
+ from torch.utils.data import Dataset, ConcatDataset, ChainDataset, IterableDataset
5
+
6
+
7
+ class Txt2ImgIterableBaseDataset(IterableDataset):
8
+ '''
9
+ Define an interface to make the IterableDatasets for text2img data chainable
10
+ '''
11
+ def __init__(self, num_records=0, valid_ids=None, size=256):
12
+ super().__init__()
13
+ self.num_records = num_records
14
+ self.valid_ids = valid_ids
15
+ self.sample_ids = valid_ids
16
+ self.size = size
17
+
18
+ print(f'{self.__class__.__name__} dataset contains {self.__len__()} examples.')
19
+
20
+ def __len__(self):
21
+ return self.num_records
22
+
23
+ @abstractmethod
24
+ def __iter__(self):
25
+ pass
26
+
27
+
28
+ class PRNGMixin(object):
29
+ """
30
+ Adds a prng property which is a numpy RandomState which gets
31
+ reinitialized whenever the pid changes to avoid synchronized sampling
32
+ behavior when used in conjunction with multiprocessing.
33
+ """
34
+ @property
35
+ def prng(self):
36
+ currentpid = os.getpid()
37
+ if getattr(self, "_initpid", None) != currentpid:
38
+ self._initpid = currentpid
39
+ self._prng = np.random.RandomState()
40
+ return self._prng
ldm/data/coco.py ADDED
@@ -0,0 +1,253 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import json
3
+ import albumentations
4
+ import numpy as np
5
+ from PIL import Image
6
+ from tqdm import tqdm
7
+ from torch.utils.data import Dataset
8
+ from abc import abstractmethod
9
+
10
+
11
+ class CocoBase(Dataset):
12
+ """needed for (image, caption, segmentation) pairs"""
13
+ def __init__(self, size=None, dataroot="", datajson="", onehot_segmentation=False, use_stuffthing=False,
14
+ crop_size=None, force_no_crop=False, given_files=None, use_segmentation=True,crop_type=None):
15
+ self.split = self.get_split()
16
+ self.size = size
17
+ if crop_size is None:
18
+ self.crop_size = size
19
+ else:
20
+ self.crop_size = crop_size
21
+
22
+ assert crop_type in [None, 'random', 'center']
23
+ self.crop_type = crop_type
24
+ self.use_segmenation = use_segmentation
25
+ self.onehot = onehot_segmentation # return segmentation as rgb or one hot
26
+ self.stuffthing = use_stuffthing # include thing in segmentation
27
+ if self.onehot and not self.stuffthing:
28
+ raise NotImplemented("One hot mode is only supported for the "
29
+ "stuffthings version because labels are stored "
30
+ "a bit different.")
31
+
32
+ data_json = datajson
33
+ with open(data_json) as json_file:
34
+ self.json_data = json.load(json_file)
35
+ self.img_id_to_captions = dict()
36
+ self.img_id_to_filepath = dict()
37
+ self.img_id_to_segmentation_filepath = dict()
38
+
39
+ assert data_json.split("/")[-1] in [f"captions_train{self.year()}.json",
40
+ f"captions_val{self.year()}.json"]
41
+ # TODO currently hardcoded paths, would be better to follow logic in
42
+ # cocstuff pixelmaps
43
+ if self.use_segmenation:
44
+ if self.stuffthing:
45
+ self.segmentation_prefix = (
46
+ f"data/cocostuffthings/val{self.year()}" if
47
+ data_json.endswith(f"captions_val{self.year()}.json") else
48
+ f"data/cocostuffthings/train{self.year()}")
49
+ else:
50
+ self.segmentation_prefix = (
51
+ f"data/coco/annotations/stuff_val{self.year()}_pixelmaps" if
52
+ data_json.endswith(f"captions_val{self.year()}.json") else
53
+ f"data/coco/annotations/stuff_train{self.year()}_pixelmaps")
54
+
55
+ imagedirs = self.json_data["images"]
56
+ self.labels = {"image_ids": list()}
57
+ for imgdir in tqdm(imagedirs, desc="ImgToPath"):
58
+ self.img_id_to_filepath[imgdir["id"]] = os.path.join(dataroot, imgdir["file_name"])
59
+ self.img_id_to_captions[imgdir["id"]] = list()
60
+ pngfilename = imgdir["file_name"].replace("jpg", "png")
61
+ if self.use_segmenation:
62
+ self.img_id_to_segmentation_filepath[imgdir["id"]] = os.path.join(
63
+ self.segmentation_prefix, pngfilename)
64
+ if given_files is not None:
65
+ if pngfilename in given_files:
66
+ self.labels["image_ids"].append(imgdir["id"])
67
+ else:
68
+ self.labels["image_ids"].append(imgdir["id"])
69
+
70
+ capdirs = self.json_data["annotations"]
71
+ for capdir in tqdm(capdirs, desc="ImgToCaptions"):
72
+ # there are in average 5 captions per image
73
+ #self.img_id_to_captions[capdir["image_id"]].append(np.array([capdir["caption"]]))
74
+ self.img_id_to_captions[capdir["image_id"]].append(capdir["caption"])
75
+
76
+ self.rescaler = albumentations.SmallestMaxSize(max_size=self.size)
77
+ if self.split=="validation":
78
+ self.cropper = albumentations.CenterCrop(height=self.crop_size, width=self.crop_size)
79
+ else:
80
+ # default option for train is random crop
81
+ if self.crop_type in [None, 'random']:
82
+ self.cropper = albumentations.RandomCrop(height=self.crop_size, width=self.crop_size)
83
+ else:
84
+ self.cropper = albumentations.CenterCrop(height=self.crop_size, width=self.crop_size)
85
+ self.preprocessor = albumentations.Compose(
86
+ [self.rescaler, self.cropper],
87
+ additional_targets={"segmentation": "image"})
88
+ if force_no_crop:
89
+ self.rescaler = albumentations.Resize(height=self.size, width=self.size)
90
+ self.preprocessor = albumentations.Compose(
91
+ [self.rescaler],
92
+ additional_targets={"segmentation": "image"})
93
+
94
+ @abstractmethod
95
+ def year(self):
96
+ raise NotImplementedError()
97
+
98
+ def __len__(self):
99
+ return len(self.labels["image_ids"])
100
+
101
+ def preprocess_image(self, image_path, segmentation_path=None):
102
+ image = Image.open(image_path)
103
+ if not image.mode == "RGB":
104
+ image = image.convert("RGB")
105
+ image = np.array(image).astype(np.uint8)
106
+ if segmentation_path:
107
+ segmentation = Image.open(segmentation_path)
108
+ if not self.onehot and not segmentation.mode == "RGB":
109
+ segmentation = segmentation.convert("RGB")
110
+ segmentation = np.array(segmentation).astype(np.uint8)
111
+ if self.onehot:
112
+ assert self.stuffthing
113
+ # stored in caffe format: unlabeled==255. stuff and thing from
114
+ # 0-181. to be compatible with the labels in
115
+ # https://github.com/nightrome/cocostuff/blob/master/labels.txt
116
+ # we shift stuffthing one to the right and put unlabeled in zero
117
+ # as long as segmentation is uint8 shifting to right handles the
118
+ # latter too
119
+ assert segmentation.dtype == np.uint8
120
+ segmentation = segmentation + 1
121
+
122
+ processed = self.preprocessor(image=image, segmentation=segmentation)
123
+
124
+ image, segmentation = processed["image"], processed["segmentation"]
125
+ else:
126
+ image = self.preprocessor(image=image,)['image']
127
+
128
+ image = (image / 127.5 - 1.0).astype(np.float32)
129
+ if segmentation_path:
130
+ if self.onehot:
131
+ assert segmentation.dtype == np.uint8
132
+ # make it one hot
133
+ n_labels = 183
134
+ flatseg = np.ravel(segmentation)
135
+ onehot = np.zeros((flatseg.size, n_labels), dtype=np.bool)
136
+ onehot[np.arange(flatseg.size), flatseg] = True
137
+ onehot = onehot.reshape(segmentation.shape + (n_labels,)).astype(int)
138
+ segmentation = onehot
139
+ else:
140
+ segmentation = (segmentation / 127.5 - 1.0).astype(np.float32)
141
+ return image, segmentation
142
+ else:
143
+ return image
144
+
145
+ def __getitem__(self, i):
146
+ img_path = self.img_id_to_filepath[self.labels["image_ids"][i]]
147
+ if self.use_segmenation:
148
+ seg_path = self.img_id_to_segmentation_filepath[self.labels["image_ids"][i]]
149
+ image, segmentation = self.preprocess_image(img_path, seg_path)
150
+ else:
151
+ image = self.preprocess_image(img_path)
152
+ captions = self.img_id_to_captions[self.labels["image_ids"][i]]
153
+ # randomly draw one of all available captions per image
154
+ caption = captions[np.random.randint(0, len(captions))]
155
+ example = {"image": image,
156
+ #"caption": [str(caption[0])],
157
+ "caption": caption,
158
+ "img_path": img_path,
159
+ "filename_": img_path.split(os.sep)[-1]
160
+ }
161
+ if self.use_segmenation:
162
+ example.update({"seg_path": seg_path, 'segmentation': segmentation})
163
+ return example
164
+
165
+
166
+ class CocoImagesAndCaptionsTrain2017(CocoBase):
167
+ """returns a pair of (image, caption)"""
168
+ def __init__(self, size, onehot_segmentation=False, use_stuffthing=False, crop_size=None, force_no_crop=False,):
169
+ super().__init__(size=size,
170
+ dataroot="data/coco/train2017",
171
+ datajson="data/coco/annotations/captions_train2017.json",
172
+ onehot_segmentation=onehot_segmentation,
173
+ use_stuffthing=use_stuffthing, crop_size=crop_size, force_no_crop=force_no_crop)
174
+
175
+ def get_split(self):
176
+ return "train"
177
+
178
+ def year(self):
179
+ return '2017'
180
+
181
+
182
+ class CocoImagesAndCaptionsValidation2017(CocoBase):
183
+ """returns a pair of (image, caption)"""
184
+ def __init__(self, size, onehot_segmentation=False, use_stuffthing=False, crop_size=None, force_no_crop=False,
185
+ given_files=None):
186
+ super().__init__(size=size,
187
+ dataroot="data/coco/val2017",
188
+ datajson="data/coco/annotations/captions_val2017.json",
189
+ onehot_segmentation=onehot_segmentation,
190
+ use_stuffthing=use_stuffthing, crop_size=crop_size, force_no_crop=force_no_crop,
191
+ given_files=given_files)
192
+
193
+ def get_split(self):
194
+ return "validation"
195
+
196
+ def year(self):
197
+ return '2017'
198
+
199
+
200
+
201
+ class CocoImagesAndCaptionsTrain2014(CocoBase):
202
+ """returns a pair of (image, caption)"""
203
+ def __init__(self, size, onehot_segmentation=False, use_stuffthing=False, crop_size=None, force_no_crop=False,crop_type='random'):
204
+ super().__init__(size=size,
205
+ dataroot="data/coco/train2014",
206
+ datajson="data/coco/annotations2014/annotations/captions_train2014.json",
207
+ onehot_segmentation=onehot_segmentation,
208
+ use_stuffthing=use_stuffthing, crop_size=crop_size, force_no_crop=force_no_crop,
209
+ use_segmentation=False,
210
+ crop_type=crop_type)
211
+
212
+ def get_split(self):
213
+ return "train"
214
+
215
+ def year(self):
216
+ return '2014'
217
+
218
+ class CocoImagesAndCaptionsValidation2014(CocoBase):
219
+ """returns a pair of (image, caption)"""
220
+ def __init__(self, size, onehot_segmentation=False, use_stuffthing=False, crop_size=None, force_no_crop=False,
221
+ given_files=None,crop_type='center',**kwargs):
222
+ super().__init__(size=size,
223
+ dataroot="data/coco/val2014",
224
+ datajson="data/coco/annotations2014/annotations/captions_val2014.json",
225
+ onehot_segmentation=onehot_segmentation,
226
+ use_stuffthing=use_stuffthing, crop_size=crop_size, force_no_crop=force_no_crop,
227
+ given_files=given_files,
228
+ use_segmentation=False,
229
+ crop_type=crop_type)
230
+
231
+ def get_split(self):
232
+ return "validation"
233
+
234
+ def year(self):
235
+ return '2014'
236
+
237
+ if __name__ == '__main__':
238
+ with open("data/coco/annotations2014/annotations/captions_val2014.json", "r") as json_file:
239
+ json_data = json.load(json_file)
240
+ capdirs = json_data["annotations"]
241
+ import pudb; pudb.set_trace()
242
+ #d2 = CocoImagesAndCaptionsTrain2014(size=256)
243
+ d2 = CocoImagesAndCaptionsValidation2014(size=256)
244
+ print("constructed dataset.")
245
+ print(f"length of {d2.__class__.__name__}: {len(d2)}")
246
+
247
+ ex2 = d2[0]
248
+ # ex3 = d3[0]
249
+ # print(ex1["image"].shape)
250
+ print(ex2["image"].shape)
251
+ # print(ex3["image"].shape)
252
+ # print(ex1["segmentation"].shape)
253
+ print(ex2["caption"].__class__.__name__)
ldm/data/dummy.py ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import random
3
+ import string
4
+ from torch.utils.data import Dataset, Subset
5
+
6
+ class DummyData(Dataset):
7
+ def __init__(self, length, size):
8
+ self.length = length
9
+ self.size = size
10
+
11
+ def __len__(self):
12
+ return self.length
13
+
14
+ def __getitem__(self, i):
15
+ x = np.random.randn(*self.size)
16
+ letters = string.ascii_lowercase
17
+ y = ''.join(random.choice(string.ascii_lowercase) for i in range(10))
18
+ return {"jpg": x, "txt": y}
19
+
20
+
21
+ class DummyDataWithEmbeddings(Dataset):
22
+ def __init__(self, length, size, emb_size):
23
+ self.length = length
24
+ self.size = size
25
+ self.emb_size = emb_size
26
+
27
+ def __len__(self):
28
+ return self.length
29
+
30
+ def __getitem__(self, i):
31
+ x = np.random.randn(*self.size)
32
+ y = np.random.randn(*self.emb_size).astype(np.float32)
33
+ return {"jpg": x, "txt": y}
34
+
ldm/data/imagenet.py ADDED
@@ -0,0 +1,394 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os, yaml, pickle, shutil, tarfile, glob
2
+ import cv2
3
+ import albumentations
4
+ import PIL
5
+ import numpy as np
6
+ import torchvision.transforms.functional as TF
7
+ from omegaconf import OmegaConf
8
+ from functools import partial
9
+ from PIL import Image
10
+ from tqdm import tqdm
11
+ from torch.utils.data import Dataset, Subset
12
+
13
+ import taming.data.utils as tdu
14
+ from taming.data.imagenet import str_to_indices, give_synsets_from_indices, download, retrieve
15
+ from taming.data.imagenet import ImagePaths
16
+
17
+ from ldm.modules.image_degradation import degradation_fn_bsr, degradation_fn_bsr_light
18
+
19
+
20
+ def synset2idx(path_to_yaml="data/index_synset.yaml"):
21
+ with open(path_to_yaml) as f:
22
+ di2s = yaml.load(f)
23
+ return dict((v,k) for k,v in di2s.items())
24
+
25
+
26
+ class ImageNetBase(Dataset):
27
+ def __init__(self, config=None):
28
+ self.config = config or OmegaConf.create()
29
+ if not type(self.config)==dict:
30
+ self.config = OmegaConf.to_container(self.config)
31
+ self.keep_orig_class_label = self.config.get("keep_orig_class_label", False)
32
+ self.process_images = True # if False we skip loading & processing images and self.data contains filepaths
33
+ self._prepare()
34
+ self._prepare_synset_to_human()
35
+ self._prepare_idx_to_synset()
36
+ self._prepare_human_to_integer_label()
37
+ self._load()
38
+
39
+ def __len__(self):
40
+ return len(self.data)
41
+
42
+ def __getitem__(self, i):
43
+ return self.data[i]
44
+
45
+ def _prepare(self):
46
+ raise NotImplementedError()
47
+
48
+ def _filter_relpaths(self, relpaths):
49
+ ignore = set([
50
+ "n06596364_9591.JPEG",
51
+ ])
52
+ relpaths = [rpath for rpath in relpaths if not rpath.split("/")[-1] in ignore]
53
+ if "sub_indices" in self.config:
54
+ indices = str_to_indices(self.config["sub_indices"])
55
+ synsets = give_synsets_from_indices(indices, path_to_yaml=self.idx2syn) # returns a list of strings
56
+ self.synset2idx = synset2idx(path_to_yaml=self.idx2syn)
57
+ files = []
58
+ for rpath in relpaths:
59
+ syn = rpath.split("/")[0]
60
+ if syn in synsets:
61
+ files.append(rpath)
62
+ return files
63
+ else:
64
+ return relpaths
65
+
66
+ def _prepare_synset_to_human(self):
67
+ SIZE = 2655750
68
+ URL = "https://heibox.uni-heidelberg.de/f/9f28e956cd304264bb82/?dl=1"
69
+ self.human_dict = os.path.join(self.root, "synset_human.txt")
70
+ if (not os.path.exists(self.human_dict) or
71
+ not os.path.getsize(self.human_dict)==SIZE):
72
+ download(URL, self.human_dict)
73
+
74
+ def _prepare_idx_to_synset(self):
75
+ URL = "https://heibox.uni-heidelberg.de/f/d835d5b6ceda4d3aa910/?dl=1"
76
+ self.idx2syn = os.path.join(self.root, "index_synset.yaml")
77
+ if (not os.path.exists(self.idx2syn)):
78
+ download(URL, self.idx2syn)
79
+
80
+ def _prepare_human_to_integer_label(self):
81
+ URL = "https://heibox.uni-heidelberg.de/f/2362b797d5be43b883f6/?dl=1"
82
+ self.human2integer = os.path.join(self.root, "imagenet1000_clsidx_to_labels.txt")
83
+ if (not os.path.exists(self.human2integer)):
84
+ download(URL, self.human2integer)
85
+ with open(self.human2integer, "r") as f:
86
+ lines = f.read().splitlines()
87
+ assert len(lines) == 1000
88
+ self.human2integer_dict = dict()
89
+ for line in lines:
90
+ value, key = line.split(":")
91
+ self.human2integer_dict[key] = int(value)
92
+
93
+ def _load(self):
94
+ with open(self.txt_filelist, "r") as f:
95
+ self.relpaths = f.read().splitlines()
96
+ l1 = len(self.relpaths)
97
+ self.relpaths = self._filter_relpaths(self.relpaths)
98
+ print("Removed {} files from filelist during filtering.".format(l1 - len(self.relpaths)))
99
+
100
+ self.synsets = [p.split("/")[0] for p in self.relpaths]
101
+ self.abspaths = [os.path.join(self.datadir, p) for p in self.relpaths]
102
+
103
+ unique_synsets = np.unique(self.synsets)
104
+ class_dict = dict((synset, i) for i, synset in enumerate(unique_synsets))
105
+ if not self.keep_orig_class_label:
106
+ self.class_labels = [class_dict[s] for s in self.synsets]
107
+ else:
108
+ self.class_labels = [self.synset2idx[s] for s in self.synsets]
109
+
110
+ with open(self.human_dict, "r") as f:
111
+ human_dict = f.read().splitlines()
112
+ human_dict = dict(line.split(maxsplit=1) for line in human_dict)
113
+
114
+ self.human_labels = [human_dict[s] for s in self.synsets]
115
+
116
+ labels = {
117
+ "relpath": np.array(self.relpaths),
118
+ "synsets": np.array(self.synsets),
119
+ "class_label": np.array(self.class_labels),
120
+ "human_label": np.array(self.human_labels),
121
+ }
122
+
123
+ if self.process_images:
124
+ self.size = retrieve(self.config, "size", default=256)
125
+ self.data = ImagePaths(self.abspaths,
126
+ labels=labels,
127
+ size=self.size,
128
+ random_crop=self.random_crop,
129
+ )
130
+ else:
131
+ self.data = self.abspaths
132
+
133
+
134
+ class ImageNetTrain(ImageNetBase):
135
+ NAME = "ILSVRC2012_train"
136
+ URL = "http://www.image-net.org/challenges/LSVRC/2012/"
137
+ AT_HASH = "a306397ccf9c2ead27155983c254227c0fd938e2"
138
+ FILES = [
139
+ "ILSVRC2012_img_train.tar",
140
+ ]
141
+ SIZES = [
142
+ 147897477120,
143
+ ]
144
+
145
+ def __init__(self, process_images=True, data_root=None, **kwargs):
146
+ self.process_images = process_images
147
+ self.data_root = data_root
148
+ super().__init__(**kwargs)
149
+
150
+ def _prepare(self):
151
+ if self.data_root:
152
+ self.root = os.path.join(self.data_root, self.NAME)
153
+ else:
154
+ cachedir = os.environ.get("XDG_CACHE_HOME", os.path.expanduser("~/.cache"))
155
+ self.root = os.path.join(cachedir, "autoencoders/data", self.NAME)
156
+
157
+ self.datadir = os.path.join(self.root, "data")
158
+ self.txt_filelist = os.path.join(self.root, "filelist.txt")
159
+ self.expected_length = 1281167
160
+ self.random_crop = retrieve(self.config, "ImageNetTrain/random_crop",
161
+ default=True)
162
+ if not tdu.is_prepared(self.root):
163
+ # prep
164
+ print("Preparing dataset {} in {}".format(self.NAME, self.root))
165
+
166
+ datadir = self.datadir
167
+ if not os.path.exists(datadir):
168
+ path = os.path.join(self.root, self.FILES[0])
169
+ if not os.path.exists(path) or not os.path.getsize(path)==self.SIZES[0]:
170
+ import academictorrents as at
171
+ atpath = at.get(self.AT_HASH, datastore=self.root)
172
+ assert atpath == path
173
+
174
+ print("Extracting {} to {}".format(path, datadir))
175
+ os.makedirs(datadir, exist_ok=True)
176
+ with tarfile.open(path, "r:") as tar:
177
+ tar.extractall(path=datadir)
178
+
179
+ print("Extracting sub-tars.")
180
+ subpaths = sorted(glob.glob(os.path.join(datadir, "*.tar")))
181
+ for subpath in tqdm(subpaths):
182
+ subdir = subpath[:-len(".tar")]
183
+ os.makedirs(subdir, exist_ok=True)
184
+ with tarfile.open(subpath, "r:") as tar:
185
+ tar.extractall(path=subdir)
186
+
187
+ filelist = glob.glob(os.path.join(datadir, "**", "*.JPEG"))
188
+ filelist = [os.path.relpath(p, start=datadir) for p in filelist]
189
+ filelist = sorted(filelist)
190
+ filelist = "\n".join(filelist)+"\n"
191
+ with open(self.txt_filelist, "w") as f:
192
+ f.write(filelist)
193
+
194
+ tdu.mark_prepared(self.root)
195
+
196
+
197
+ class ImageNetValidation(ImageNetBase):
198
+ NAME = "ILSVRC2012_validation"
199
+ URL = "http://www.image-net.org/challenges/LSVRC/2012/"
200
+ AT_HASH = "5d6d0df7ed81efd49ca99ea4737e0ae5e3a5f2e5"
201
+ VS_URL = "https://heibox.uni-heidelberg.de/f/3e0f6e9c624e45f2bd73/?dl=1"
202
+ FILES = [
203
+ "ILSVRC2012_img_val.tar",
204
+ "validation_synset.txt",
205
+ ]
206
+ SIZES = [
207
+ 6744924160,
208
+ 1950000,
209
+ ]
210
+
211
+ def __init__(self, process_images=True, data_root=None, **kwargs):
212
+ self.data_root = data_root
213
+ self.process_images = process_images
214
+ super().__init__(**kwargs)
215
+
216
+ def _prepare(self):
217
+ if self.data_root:
218
+ self.root = os.path.join(self.data_root, self.NAME)
219
+ else:
220
+ cachedir = os.environ.get("XDG_CACHE_HOME", os.path.expanduser("~/.cache"))
221
+ self.root = os.path.join(cachedir, "autoencoders/data", self.NAME)
222
+ self.datadir = os.path.join(self.root, "data")
223
+ self.txt_filelist = os.path.join(self.root, "filelist.txt")
224
+ self.expected_length = 50000
225
+ self.random_crop = retrieve(self.config, "ImageNetValidation/random_crop",
226
+ default=False)
227
+ if not tdu.is_prepared(self.root):
228
+ # prep
229
+ print("Preparing dataset {} in {}".format(self.NAME, self.root))
230
+
231
+ datadir = self.datadir
232
+ if not os.path.exists(datadir):
233
+ path = os.path.join(self.root, self.FILES[0])
234
+ if not os.path.exists(path) or not os.path.getsize(path)==self.SIZES[0]:
235
+ import academictorrents as at
236
+ atpath = at.get(self.AT_HASH, datastore=self.root)
237
+ assert atpath == path
238
+
239
+ print("Extracting {} to {}".format(path, datadir))
240
+ os.makedirs(datadir, exist_ok=True)
241
+ with tarfile.open(path, "r:") as tar:
242
+ tar.extractall(path=datadir)
243
+
244
+ vspath = os.path.join(self.root, self.FILES[1])
245
+ if not os.path.exists(vspath) or not os.path.getsize(vspath)==self.SIZES[1]:
246
+ download(self.VS_URL, vspath)
247
+
248
+ with open(vspath, "r") as f:
249
+ synset_dict = f.read().splitlines()
250
+ synset_dict = dict(line.split() for line in synset_dict)
251
+
252
+ print("Reorganizing into synset folders")
253
+ synsets = np.unique(list(synset_dict.values()))
254
+ for s in synsets:
255
+ os.makedirs(os.path.join(datadir, s), exist_ok=True)
256
+ for k, v in synset_dict.items():
257
+ src = os.path.join(datadir, k)
258
+ dst = os.path.join(datadir, v)
259
+ shutil.move(src, dst)
260
+
261
+ filelist = glob.glob(os.path.join(datadir, "**", "*.JPEG"))
262
+ filelist = [os.path.relpath(p, start=datadir) for p in filelist]
263
+ filelist = sorted(filelist)
264
+ filelist = "\n".join(filelist)+"\n"
265
+ with open(self.txt_filelist, "w") as f:
266
+ f.write(filelist)
267
+
268
+ tdu.mark_prepared(self.root)
269
+
270
+
271
+
272
+ class ImageNetSR(Dataset):
273
+ def __init__(self, size=None,
274
+ degradation=None, downscale_f=4, min_crop_f=0.5, max_crop_f=1.,
275
+ random_crop=True):
276
+ """
277
+ Imagenet Superresolution Dataloader
278
+ Performs following ops in order:
279
+ 1. crops a crop of size s from image either as random or center crop
280
+ 2. resizes crop to size with cv2.area_interpolation
281
+ 3. degrades resized crop with degradation_fn
282
+
283
+ :param size: resizing to size after cropping
284
+ :param degradation: degradation_fn, e.g. cv_bicubic or bsrgan_light
285
+ :param downscale_f: Low Resolution Downsample factor
286
+ :param min_crop_f: determines crop size s,
287
+ where s = c * min_img_side_len with c sampled from interval (min_crop_f, max_crop_f)
288
+ :param max_crop_f: ""
289
+ :param data_root:
290
+ :param random_crop:
291
+ """
292
+ self.base = self.get_base()
293
+ assert size
294
+ assert (size / downscale_f).is_integer()
295
+ self.size = size
296
+ self.LR_size = int(size / downscale_f)
297
+ self.min_crop_f = min_crop_f
298
+ self.max_crop_f = max_crop_f
299
+ assert(max_crop_f <= 1.)
300
+ self.center_crop = not random_crop
301
+
302
+ self.image_rescaler = albumentations.SmallestMaxSize(max_size=size, interpolation=cv2.INTER_AREA)
303
+
304
+ self.pil_interpolation = False # gets reset later if incase interp_op is from pillow
305
+
306
+ if degradation == "bsrgan":
307
+ self.degradation_process = partial(degradation_fn_bsr, sf=downscale_f)
308
+
309
+ elif degradation == "bsrgan_light":
310
+ self.degradation_process = partial(degradation_fn_bsr_light, sf=downscale_f)
311
+
312
+ else:
313
+ interpolation_fn = {
314
+ "cv_nearest": cv2.INTER_NEAREST,
315
+ "cv_bilinear": cv2.INTER_LINEAR,
316
+ "cv_bicubic": cv2.INTER_CUBIC,
317
+ "cv_area": cv2.INTER_AREA,
318
+ "cv_lanczos": cv2.INTER_LANCZOS4,
319
+ "pil_nearest": PIL.Image.NEAREST,
320
+ "pil_bilinear": PIL.Image.BILINEAR,
321
+ "pil_bicubic": PIL.Image.BICUBIC,
322
+ "pil_box": PIL.Image.BOX,
323
+ "pil_hamming": PIL.Image.HAMMING,
324
+ "pil_lanczos": PIL.Image.LANCZOS,
325
+ }[degradation]
326
+
327
+ self.pil_interpolation = degradation.startswith("pil_")
328
+
329
+ if self.pil_interpolation:
330
+ self.degradation_process = partial(TF.resize, size=self.LR_size, interpolation=interpolation_fn)
331
+
332
+ else:
333
+ self.degradation_process = albumentations.SmallestMaxSize(max_size=self.LR_size,
334
+ interpolation=interpolation_fn)
335
+
336
+ def __len__(self):
337
+ return len(self.base)
338
+
339
+ def __getitem__(self, i):
340
+ example = self.base[i]
341
+ image = Image.open(example["file_path_"])
342
+
343
+ if not image.mode == "RGB":
344
+ image = image.convert("RGB")
345
+
346
+ image = np.array(image).astype(np.uint8)
347
+
348
+ min_side_len = min(image.shape[:2])
349
+ crop_side_len = min_side_len * np.random.uniform(self.min_crop_f, self.max_crop_f, size=None)
350
+ crop_side_len = int(crop_side_len)
351
+
352
+ if self.center_crop:
353
+ self.cropper = albumentations.CenterCrop(height=crop_side_len, width=crop_side_len)
354
+
355
+ else:
356
+ self.cropper = albumentations.RandomCrop(height=crop_side_len, width=crop_side_len)
357
+
358
+ image = self.cropper(image=image)["image"]
359
+ image = self.image_rescaler(image=image)["image"]
360
+
361
+ if self.pil_interpolation:
362
+ image_pil = PIL.Image.fromarray(image)
363
+ LR_image = self.degradation_process(image_pil)
364
+ LR_image = np.array(LR_image).astype(np.uint8)
365
+
366
+ else:
367
+ LR_image = self.degradation_process(image=image)["image"]
368
+
369
+ example["image"] = (image/127.5 - 1.0).astype(np.float32)
370
+ example["LR_image"] = (LR_image/127.5 - 1.0).astype(np.float32)
371
+ example["caption"] = example["human_label"] # dummy caption
372
+ return example
373
+
374
+
375
+ class ImageNetSRTrain(ImageNetSR):
376
+ def __init__(self, **kwargs):
377
+ super().__init__(**kwargs)
378
+
379
+ def get_base(self):
380
+ with open("data/imagenet_train_hr_indices.p", "rb") as f:
381
+ indices = pickle.load(f)
382
+ dset = ImageNetTrain(process_images=False,)
383
+ return Subset(dset, indices)
384
+
385
+
386
+ class ImageNetSRValidation(ImageNetSR):
387
+ def __init__(self, **kwargs):
388
+ super().__init__(**kwargs)
389
+
390
+ def get_base(self):
391
+ with open("data/imagenet_val_hr_indices.p", "rb") as f:
392
+ indices = pickle.load(f)
393
+ dset = ImageNetValidation(process_images=False,)
394
+ return Subset(dset, indices)
ldm/data/inpainting/__init__.py ADDED
File without changes
ldm/data/inpainting/synthetic_mask.py ADDED
@@ -0,0 +1,166 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from PIL import Image, ImageDraw
2
+ import numpy as np
3
+
4
+ settings = {
5
+ "256narrow": {
6
+ "p_irr": 1,
7
+ "min_n_irr": 4,
8
+ "max_n_irr": 50,
9
+ "max_l_irr": 40,
10
+ "max_w_irr": 10,
11
+ "min_n_box": None,
12
+ "max_n_box": None,
13
+ "min_s_box": None,
14
+ "max_s_box": None,
15
+ "marg": None,
16
+ },
17
+ "256train": {
18
+ "p_irr": 0.5,
19
+ "min_n_irr": 1,
20
+ "max_n_irr": 5,
21
+ "max_l_irr": 200,
22
+ "max_w_irr": 100,
23
+ "min_n_box": 1,
24
+ "max_n_box": 4,
25
+ "min_s_box": 30,
26
+ "max_s_box": 150,
27
+ "marg": 10,
28
+ },
29
+ "512train": { # TODO: experimental
30
+ "p_irr": 0.5,
31
+ "min_n_irr": 1,
32
+ "max_n_irr": 5,
33
+ "max_l_irr": 450,
34
+ "max_w_irr": 250,
35
+ "min_n_box": 1,
36
+ "max_n_box": 4,
37
+ "min_s_box": 30,
38
+ "max_s_box": 300,
39
+ "marg": 10,
40
+ },
41
+ "512train-large": { # TODO: experimental
42
+ "p_irr": 0.5,
43
+ "min_n_irr": 1,
44
+ "max_n_irr": 5,
45
+ "max_l_irr": 450,
46
+ "max_w_irr": 400,
47
+ "min_n_box": 1,
48
+ "max_n_box": 4,
49
+ "min_s_box": 75,
50
+ "max_s_box": 450,
51
+ "marg": 10,
52
+ },
53
+ }
54
+
55
+
56
+ def gen_segment_mask(mask, start, end, brush_width):
57
+ mask = mask > 0
58
+ mask = (255 * mask).astype(np.uint8)
59
+ mask = Image.fromarray(mask)
60
+ draw = ImageDraw.Draw(mask)
61
+ draw.line([start, end], fill=255, width=brush_width, joint="curve")
62
+ mask = np.array(mask) / 255
63
+ return mask
64
+
65
+
66
+ def gen_box_mask(mask, masked):
67
+ x_0, y_0, w, h = masked
68
+ mask[y_0:y_0 + h, x_0:x_0 + w] = 1
69
+ return mask
70
+
71
+
72
+ def gen_round_mask(mask, masked, radius):
73
+ x_0, y_0, w, h = masked
74
+ xy = [(x_0, y_0), (x_0 + w, y_0 + w)]
75
+
76
+ mask = mask > 0
77
+ mask = (255 * mask).astype(np.uint8)
78
+ mask = Image.fromarray(mask)
79
+ draw = ImageDraw.Draw(mask)
80
+ draw.rounded_rectangle(xy, radius=radius, fill=255)
81
+ mask = np.array(mask) / 255
82
+ return mask
83
+
84
+
85
+ def gen_large_mask(prng, img_h, img_w,
86
+ marg, p_irr, min_n_irr, max_n_irr, max_l_irr, max_w_irr,
87
+ min_n_box, max_n_box, min_s_box, max_s_box):
88
+ """
89
+ img_h: int, an image height
90
+ img_w: int, an image width
91
+ marg: int, a margin for a box starting coordinate
92
+ p_irr: float, 0 <= p_irr <= 1, a probability of a polygonal chain mask
93
+
94
+ min_n_irr: int, min number of segments
95
+ max_n_irr: int, max number of segments
96
+ max_l_irr: max length of a segment in polygonal chain
97
+ max_w_irr: max width of a segment in polygonal chain
98
+
99
+ min_n_box: int, min bound for the number of box primitives
100
+ max_n_box: int, max bound for the number of box primitives
101
+ min_s_box: int, min length of a box side
102
+ max_s_box: int, max length of a box side
103
+ """
104
+
105
+ mask = np.zeros((img_h, img_w))
106
+ uniform = prng.randint
107
+
108
+ if np.random.uniform(0, 1) < p_irr: # generate polygonal chain
109
+ n = uniform(min_n_irr, max_n_irr) # sample number of segments
110
+
111
+ for _ in range(n):
112
+ y = uniform(0, img_h) # sample a starting point
113
+ x = uniform(0, img_w)
114
+
115
+ a = uniform(0, 360) # sample angle
116
+ l = uniform(10, max_l_irr) # sample segment length
117
+ w = uniform(5, max_w_irr) # sample a segment width
118
+
119
+ # draw segment starting from (x,y) to (x_,y_) using brush of width w
120
+ x_ = x + l * np.sin(a)
121
+ y_ = y + l * np.cos(a)
122
+
123
+ mask = gen_segment_mask(mask, start=(x, y), end=(x_, y_), brush_width=w)
124
+ x, y = x_, y_
125
+ else: # generate Box masks
126
+ n = uniform(min_n_box, max_n_box) # sample number of rectangles
127
+
128
+ for _ in range(n):
129
+ h = uniform(min_s_box, max_s_box) # sample box shape
130
+ w = uniform(min_s_box, max_s_box)
131
+
132
+ x_0 = uniform(marg, img_w - marg - w) # sample upper-left coordinates of box
133
+ y_0 = uniform(marg, img_h - marg - h)
134
+
135
+ if np.random.uniform(0, 1) < 0.5:
136
+ mask = gen_box_mask(mask, masked=(x_0, y_0, w, h))
137
+ else:
138
+ r = uniform(0, 60) # sample radius
139
+ mask = gen_round_mask(mask, masked=(x_0, y_0, w, h), radius=r)
140
+ return mask
141
+
142
+
143
+ make_lama_mask = lambda prng, h, w: gen_large_mask(prng, h, w, **settings["256train"])
144
+ make_narrow_lama_mask = lambda prng, h, w: gen_large_mask(prng, h, w, **settings["256narrow"])
145
+ make_512_lama_mask = lambda prng, h, w: gen_large_mask(prng, h, w, **settings["512train"])
146
+ make_512_lama_mask_large = lambda prng, h, w: gen_large_mask(prng, h, w, **settings["512train-large"])
147
+
148
+
149
+ MASK_MODES = {
150
+ "256train": make_lama_mask,
151
+ "256narrow": make_narrow_lama_mask,
152
+ "512train": make_512_lama_mask,
153
+ "512train-large": make_512_lama_mask_large
154
+ }
155
+
156
+ if __name__ == "__main__":
157
+ import sys
158
+
159
+ out = sys.argv[1]
160
+
161
+ prng = np.random.RandomState(1)
162
+ kwargs = settings["256train"]
163
+ mask = gen_large_mask(prng, 256, 256, **kwargs)
164
+ mask = (255 * mask).astype(np.uint8)
165
+ mask = Image.fromarray(mask)
166
+ mask.save(out)
ldm/data/laion.py ADDED
@@ -0,0 +1,537 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import webdataset as wds
2
+ import kornia
3
+ from PIL import Image
4
+ import io
5
+ import os
6
+ import torchvision
7
+ from PIL import Image
8
+ import glob
9
+ import random
10
+ import numpy as np
11
+ import pytorch_lightning as pl
12
+ from tqdm import tqdm
13
+ from omegaconf import OmegaConf
14
+ from einops import rearrange
15
+ import torch
16
+ from webdataset.handlers import warn_and_continue
17
+
18
+
19
+ from ldm.util import instantiate_from_config
20
+ from ldm.data.inpainting.synthetic_mask import gen_large_mask, MASK_MODES
21
+ from ldm.data.base import PRNGMixin
22
+
23
+
24
+ class DataWithWings(torch.utils.data.IterableDataset):
25
+ def __init__(self, min_size, transform=None, target_transform=None):
26
+ self.min_size = min_size
27
+ self.transform = transform if transform is not None else nn.Identity()
28
+ self.target_transform = target_transform if target_transform is not None else nn.Identity()
29
+ self.kv = OnDiskKV(file='/home/ubuntu/laion5B-watermark-safety-ordered', key_format='q', value_format='ee')
30
+ self.kv_aesthetic = OnDiskKV(file='/home/ubuntu/laion5B-aesthetic-tags-kv', key_format='q', value_format='e')
31
+ self.pwatermark_threshold = 0.8
32
+ self.punsafe_threshold = 0.5
33
+ self.aesthetic_threshold = 5.
34
+ self.total_samples = 0
35
+ self.samples = 0
36
+ location = 'pipe:aws s3 cp --quiet s3://s-datasets/laion5b/laion2B-data/{000000..231349}.tar -'
37
+
38
+ self.inner_dataset = wds.DataPipeline(
39
+ wds.ResampledShards(location),
40
+ wds.tarfile_to_samples(handler=wds.warn_and_continue),
41
+ wds.shuffle(1000, handler=wds.warn_and_continue),
42
+ wds.decode('pilrgb', handler=wds.warn_and_continue),
43
+ wds.map(self._add_tags, handler=wds.ignore_and_continue),
44
+ wds.select(self._filter_predicate),
45
+ wds.map_dict(jpg=self.transform, txt=self.target_transform, punsafe=self._punsafe_to_class, handler=wds.warn_and_continue),
46
+ wds.to_tuple('jpg', 'txt', 'punsafe', handler=wds.warn_and_continue),
47
+ )
48
+
49
+ @staticmethod
50
+ def _compute_hash(url, text):
51
+ if url is None:
52
+ url = ''
53
+ if text is None:
54
+ text = ''
55
+ total = (url + text).encode('utf-8')
56
+ return mmh3.hash64(total)[0]
57
+
58
+ def _add_tags(self, x):
59
+ hsh = self._compute_hash(x['json']['url'], x['txt'])
60
+ pwatermark, punsafe = self.kv[hsh]
61
+ aesthetic = self.kv_aesthetic[hsh][0]
62
+ return {**x, 'pwatermark': pwatermark, 'punsafe': punsafe, 'aesthetic': aesthetic}
63
+
64
+ def _punsafe_to_class(self, punsafe):
65
+ return torch.tensor(punsafe >= self.punsafe_threshold).long()
66
+
67
+ def _filter_predicate(self, x):
68
+ try:
69
+ return x['pwatermark'] < self.pwatermark_threshold and x['aesthetic'] >= self.aesthetic_threshold and x['json']['original_width'] >= self.min_size and x['json']['original_height'] >= self.min_size
70
+ except:
71
+ return False
72
+
73
+ def __iter__(self):
74
+ return iter(self.inner_dataset)
75
+
76
+
77
+ def dict_collation_fn(samples, combine_tensors=True, combine_scalars=True):
78
+ """Take a list of samples (as dictionary) and create a batch, preserving the keys.
79
+ If `tensors` is True, `ndarray` objects are combined into
80
+ tensor batches.
81
+ :param dict samples: list of samples
82
+ :param bool tensors: whether to turn lists of ndarrays into a single ndarray
83
+ :returns: single sample consisting of a batch
84
+ :rtype: dict
85
+ """
86
+ keys = set.intersection(*[set(sample.keys()) for sample in samples])
87
+ batched = {key: [] for key in keys}
88
+
89
+ for s in samples:
90
+ [batched[key].append(s[key]) for key in batched]
91
+
92
+ result = {}
93
+ for key in batched:
94
+ if isinstance(batched[key][0], (int, float)):
95
+ if combine_scalars:
96
+ result[key] = np.array(list(batched[key]))
97
+ elif isinstance(batched[key][0], torch.Tensor):
98
+ if combine_tensors:
99
+ result[key] = torch.stack(list(batched[key]))
100
+ elif isinstance(batched[key][0], np.ndarray):
101
+ if combine_tensors:
102
+ result[key] = np.array(list(batched[key]))
103
+ else:
104
+ result[key] = list(batched[key])
105
+ return result
106
+
107
+
108
+ class WebDataModuleFromConfig(pl.LightningDataModule):
109
+ def __init__(self, tar_base, batch_size, train=None, validation=None,
110
+ test=None, num_workers=4, multinode=True, min_size=None,
111
+ max_pwatermark=1.0,
112
+ **kwargs):
113
+ super().__init__(self)
114
+ print(f'Setting tar base to {tar_base}')
115
+ self.tar_base = tar_base
116
+ self.batch_size = batch_size
117
+ self.num_workers = num_workers
118
+ self.train = train
119
+ self.validation = validation
120
+ self.test = test
121
+ self.multinode = multinode
122
+ self.min_size = min_size # filter out very small images
123
+ self.max_pwatermark = max_pwatermark # filter out watermarked images
124
+
125
+ def make_loader(self, dataset_config, train=True):
126
+ if 'image_transforms' in dataset_config:
127
+ image_transforms = [instantiate_from_config(tt) for tt in dataset_config.image_transforms]
128
+ else:
129
+ image_transforms = []
130
+
131
+ image_transforms.extend([torchvision.transforms.ToTensor(),
132
+ torchvision.transforms.Lambda(lambda x: rearrange(x * 2. - 1., 'c h w -> h w c'))])
133
+ image_transforms = torchvision.transforms.Compose(image_transforms)
134
+
135
+ if 'transforms' in dataset_config:
136
+ transforms_config = OmegaConf.to_container(dataset_config.transforms)
137
+ else:
138
+ transforms_config = dict()
139
+
140
+ transform_dict = {dkey: load_partial_from_config(transforms_config[dkey])
141
+ if transforms_config[dkey] != 'identity' else identity
142
+ for dkey in transforms_config}
143
+ img_key = dataset_config.get('image_key', 'jpeg')
144
+ transform_dict.update({img_key: image_transforms})
145
+
146
+ if 'postprocess' in dataset_config:
147
+ postprocess = instantiate_from_config(dataset_config['postprocess'])
148
+ else:
149
+ postprocess = None
150
+
151
+ shuffle = dataset_config.get('shuffle', 0)
152
+ shardshuffle = shuffle > 0
153
+
154
+ nodesplitter = wds.shardlists.split_by_node if self.multinode else wds.shardlists.single_node_only
155
+
156
+ if self.tar_base == "__improvedaesthetic__":
157
+ print("## Warning, loading the same improved aesthetic dataset "
158
+ "for all splits and ignoring shards parameter.")
159
+ tars = "pipe:aws s3 cp s3://s-laion/improved-aesthetics-laion-2B-en-subsets/aesthetics_tars/{000000..060207}.tar -"
160
+ else:
161
+ tars = os.path.join(self.tar_base, dataset_config.shards)
162
+
163
+ dset = wds.WebDataset(
164
+ tars,
165
+ nodesplitter=nodesplitter,
166
+ shardshuffle=shardshuffle,
167
+ handler=wds.warn_and_continue).repeat().shuffle(shuffle)
168
+ print(f'Loading webdataset with {len(dset.pipeline[0].urls)} shards.')
169
+
170
+ dset = (dset
171
+ .select(self.filter_keys)
172
+ .decode('pil', handler=wds.warn_and_continue)
173
+ .select(self.filter_size)
174
+ .map_dict(**transform_dict, handler=wds.warn_and_continue)
175
+ )
176
+ if postprocess is not None:
177
+ dset = dset.map(postprocess)
178
+ dset = (dset
179
+ .batched(self.batch_size, partial=False,
180
+ collation_fn=dict_collation_fn)
181
+ )
182
+
183
+ loader = wds.WebLoader(dset, batch_size=None, shuffle=False,
184
+ num_workers=self.num_workers)
185
+
186
+ return loader
187
+
188
+ def filter_size(self, x):
189
+ try:
190
+ valid = True
191
+ if self.min_size is not None and self.min_size > 1:
192
+ try:
193
+ valid = valid and x['json']['original_width'] >= self.min_size and x['json']['original_height'] >= self.min_size
194
+ except Exception:
195
+ valid = False
196
+ if self.max_pwatermark is not None and self.max_pwatermark < 1.0:
197
+ try:
198
+ valid = valid and x['json']['pwatermark'] <= self.max_pwatermark
199
+ except Exception:
200
+ valid = False
201
+ return valid
202
+ except Exception:
203
+ return False
204
+
205
+ def filter_keys(self, x):
206
+ try:
207
+ return ("jpg" in x) and ("txt" in x)
208
+ except Exception:
209
+ return False
210
+
211
+ def train_dataloader(self):
212
+ return self.make_loader(self.train)
213
+
214
+ def val_dataloader(self):
215
+ return self.make_loader(self.validation, train=False)
216
+
217
+ def test_dataloader(self):
218
+ return self.make_loader(self.test, train=False)
219
+
220
+
221
+ from ldm.modules.image_degradation import degradation_fn_bsr_light
222
+ import cv2
223
+
224
+ class AddLR(object):
225
+ def __init__(self, factor, output_size, initial_size=None, image_key="jpg"):
226
+ self.factor = factor
227
+ self.output_size = output_size
228
+ self.image_key = image_key
229
+ self.initial_size = initial_size
230
+
231
+ def pt2np(self, x):
232
+ x = ((x+1.0)*127.5).clamp(0, 255).to(dtype=torch.uint8).detach().cpu().numpy()
233
+ return x
234
+
235
+ def np2pt(self, x):
236
+ x = torch.from_numpy(x)/127.5-1.0
237
+ return x
238
+
239
+ def __call__(self, sample):
240
+ # sample['jpg'] is tensor hwc in [-1, 1] at this point
241
+ x = self.pt2np(sample[self.image_key])
242
+ if self.initial_size is not None:
243
+ x = cv2.resize(x, (self.initial_size, self.initial_size), interpolation=2)
244
+ x = degradation_fn_bsr_light(x, sf=self.factor)['image']
245
+ x = cv2.resize(x, (self.output_size, self.output_size), interpolation=2)
246
+ x = self.np2pt(x)
247
+ sample['lr'] = x
248
+ return sample
249
+
250
+ class AddBW(object):
251
+ def __init__(self, image_key="jpg"):
252
+ self.image_key = image_key
253
+
254
+ def pt2np(self, x):
255
+ x = ((x+1.0)*127.5).clamp(0, 255).to(dtype=torch.uint8).detach().cpu().numpy()
256
+ return x
257
+
258
+ def np2pt(self, x):
259
+ x = torch.from_numpy(x)/127.5-1.0
260
+ return x
261
+
262
+ def __call__(self, sample):
263
+ # sample['jpg'] is tensor hwc in [-1, 1] at this point
264
+ x = sample[self.image_key]
265
+ w = torch.rand(3, device=x.device)
266
+ w /= w.sum()
267
+ out = torch.einsum('hwc,c->hw', x, w)
268
+
269
+ # Keep as 3ch so we can pass to encoder, also we might want to add hints
270
+ sample['lr'] = out.unsqueeze(-1).tile(1,1,3)
271
+ return sample
272
+
273
+ class AddMask(PRNGMixin):
274
+ def __init__(self, mode="512train", p_drop=0.):
275
+ super().__init__()
276
+ assert mode in list(MASK_MODES.keys()), f'unknown mask generation mode "{mode}"'
277
+ self.make_mask = MASK_MODES[mode]
278
+ self.p_drop = p_drop
279
+
280
+ def __call__(self, sample):
281
+ # sample['jpg'] is tensor hwc in [-1, 1] at this point
282
+ x = sample['jpg']
283
+ mask = self.make_mask(self.prng, x.shape[0], x.shape[1])
284
+ if self.prng.choice(2, p=[1 - self.p_drop, self.p_drop]):
285
+ mask = np.ones_like(mask)
286
+ mask[mask < 0.5] = 0
287
+ mask[mask > 0.5] = 1
288
+ mask = torch.from_numpy(mask[..., None])
289
+ sample['mask'] = mask
290
+ sample['masked_image'] = x * (mask < 0.5)
291
+ return sample
292
+
293
+
294
+ class AddEdge(PRNGMixin):
295
+ def __init__(self, mode="512train", mask_edges=True):
296
+ super().__init__()
297
+ assert mode in list(MASK_MODES.keys()), f'unknown mask generation mode "{mode}"'
298
+ self.make_mask = MASK_MODES[mode]
299
+ self.n_down_choices = [0]
300
+ self.sigma_choices = [1, 2]
301
+ self.mask_edges = mask_edges
302
+
303
+ @torch.no_grad()
304
+ def __call__(self, sample):
305
+ # sample['jpg'] is tensor hwc in [-1, 1] at this point
306
+ x = sample['jpg']
307
+
308
+ mask = self.make_mask(self.prng, x.shape[0], x.shape[1])
309
+ mask[mask < 0.5] = 0
310
+ mask[mask > 0.5] = 1
311
+ mask = torch.from_numpy(mask[..., None])
312
+ sample['mask'] = mask
313
+
314
+ n_down_idx = self.prng.choice(len(self.n_down_choices))
315
+ sigma_idx = self.prng.choice(len(self.sigma_choices))
316
+
317
+ n_choices = len(self.n_down_choices)*len(self.sigma_choices)
318
+ raveled_idx = np.ravel_multi_index((n_down_idx, sigma_idx),
319
+ (len(self.n_down_choices), len(self.sigma_choices)))
320
+ normalized_idx = raveled_idx/max(1, n_choices-1)
321
+
322
+ n_down = self.n_down_choices[n_down_idx]
323
+ sigma = self.sigma_choices[sigma_idx]
324
+
325
+ kernel_size = 4*sigma+1
326
+ kernel_size = (kernel_size, kernel_size)
327
+ sigma = (sigma, sigma)
328
+ canny = kornia.filters.Canny(
329
+ low_threshold=0.1,
330
+ high_threshold=0.2,
331
+ kernel_size=kernel_size,
332
+ sigma=sigma,
333
+ hysteresis=True,
334
+ )
335
+ y = (x+1.0)/2.0 # in 01
336
+ y = y.unsqueeze(0).permute(0, 3, 1, 2).contiguous()
337
+
338
+ # down
339
+ for i_down in range(n_down):
340
+ size = min(y.shape[-2], y.shape[-1])//2
341
+ y = kornia.geometry.transform.resize(y, size, antialias=True)
342
+
343
+ # edge
344
+ _, y = canny(y)
345
+
346
+ if n_down > 0:
347
+ size = x.shape[0], x.shape[1]
348
+ y = kornia.geometry.transform.resize(y, size, interpolation="nearest")
349
+
350
+ y = y.permute(0, 2, 3, 1)[0].expand(-1, -1, 3).contiguous()
351
+ y = y*2.0-1.0
352
+
353
+ if self.mask_edges:
354
+ sample['masked_image'] = y * (mask < 0.5)
355
+ else:
356
+ sample['masked_image'] = y
357
+ sample['mask'] = torch.zeros_like(sample['mask'])
358
+
359
+ # concat normalized idx
360
+ sample['smoothing_strength'] = torch.ones_like(sample['mask'])*normalized_idx
361
+
362
+ return sample
363
+
364
+
365
+ def example00():
366
+ url = "pipe:aws s3 cp s3://s-datasets/laion5b/laion2B-data/000000.tar -"
367
+ dataset = wds.WebDataset(url)
368
+ example = next(iter(dataset))
369
+ for k in example:
370
+ print(k, type(example[k]))
371
+
372
+ print(example["__key__"])
373
+ for k in ["json", "txt"]:
374
+ print(example[k].decode())
375
+
376
+ image = Image.open(io.BytesIO(example["jpg"]))
377
+ outdir = "tmp"
378
+ os.makedirs(outdir, exist_ok=True)
379
+ image.save(os.path.join(outdir, example["__key__"] + ".png"))
380
+
381
+
382
+ def load_example(example):
383
+ return {
384
+ "key": example["__key__"],
385
+ "image": Image.open(io.BytesIO(example["jpg"])),
386
+ "text": example["txt"].decode(),
387
+ }
388
+
389
+
390
+ for i, example in tqdm(enumerate(dataset)):
391
+ ex = load_example(example)
392
+ print(ex["image"].size, ex["text"])
393
+ if i >= 100:
394
+ break
395
+
396
+
397
+ def example01():
398
+ # the first laion shards contain ~10k examples each
399
+ url = "pipe:aws s3 cp s3://s-datasets/laion5b/laion2B-data/{000000..000002}.tar -"
400
+
401
+ batch_size = 3
402
+ shuffle_buffer = 10000
403
+ dset = wds.WebDataset(
404
+ url,
405
+ nodesplitter=wds.shardlists.split_by_node,
406
+ shardshuffle=True,
407
+ )
408
+ dset = (dset
409
+ .shuffle(shuffle_buffer, initial=shuffle_buffer)
410
+ .decode('pil', handler=warn_and_continue)
411
+ .batched(batch_size, partial=False,
412
+ collation_fn=dict_collation_fn)
413
+ )
414
+
415
+ num_workers = 2
416
+ loader = wds.WebLoader(dset, batch_size=None, shuffle=False, num_workers=num_workers)
417
+
418
+ batch_sizes = list()
419
+ keys_per_epoch = list()
420
+ for epoch in range(5):
421
+ keys = list()
422
+ for batch in tqdm(loader):
423
+ batch_sizes.append(len(batch["__key__"]))
424
+ keys.append(batch["__key__"])
425
+
426
+ for bs in batch_sizes:
427
+ assert bs==batch_size
428
+ print(f"{len(batch_sizes)} batches of size {batch_size}.")
429
+ batch_sizes = list()
430
+
431
+ keys_per_epoch.append(keys)
432
+ for i_batch in [0, 1, -1]:
433
+ print(f"Batch {i_batch} of epoch {epoch}:")
434
+ print(keys[i_batch])
435
+ print("next epoch.")
436
+
437
+
438
+ def example02():
439
+ from omegaconf import OmegaConf
440
+ from torch.utils.data.distributed import DistributedSampler
441
+ from torch.utils.data import IterableDataset
442
+ from torch.utils.data import DataLoader, RandomSampler, Sampler, SequentialSampler
443
+ from pytorch_lightning.trainer.supporters import CombinedLoader, CycleIterator
444
+
445
+ #config = OmegaConf.load("configs/stable-diffusion/txt2img-1p4B-multinode-clip-encoder-high-res-512.yaml")
446
+ #config = OmegaConf.load("configs/stable-diffusion/txt2img-upscale-clip-encoder-f16-1024.yaml")
447
+ config = OmegaConf.load("configs/stable-diffusion/txt2img-v2-clip-encoder-improved_aesthetics-256.yaml")
448
+ datamod = WebDataModuleFromConfig(**config["data"]["params"])
449
+ dataloader = datamod.train_dataloader()
450
+
451
+ for batch in dataloader:
452
+ print(batch.keys())
453
+ print(batch["jpg"].shape)
454
+ break
455
+
456
+
457
+ def example03():
458
+ # improved aesthetics
459
+ tars = "pipe:aws s3 cp s3://s-laion/improved-aesthetics-laion-2B-en-subsets/aesthetics_tars/{000000..060207}.tar -"
460
+ dataset = wds.WebDataset(tars)
461
+
462
+ def filter_keys(x):
463
+ try:
464
+ return ("jpg" in x) and ("txt" in x)
465
+ except Exception:
466
+ return False
467
+
468
+ def filter_size(x):
469
+ try:
470
+ return x['json']['original_width'] >= 512 and x['json']['original_height'] >= 512
471
+ except Exception:
472
+ return False
473
+
474
+ def filter_watermark(x):
475
+ try:
476
+ return x['json']['pwatermark'] < 0.5
477
+ except Exception:
478
+ return False
479
+
480
+ dataset = (dataset
481
+ .select(filter_keys)
482
+ .decode('pil', handler=wds.warn_and_continue))
483
+ n_save = 20
484
+ n_total = 0
485
+ n_large = 0
486
+ n_large_nowm = 0
487
+ for i, example in enumerate(dataset):
488
+ n_total += 1
489
+ if filter_size(example):
490
+ n_large += 1
491
+ if filter_watermark(example):
492
+ n_large_nowm += 1
493
+ if n_large_nowm < n_save+1:
494
+ image = example["jpg"]
495
+ image.save(os.path.join("tmp", f"{n_large_nowm-1:06}.png"))
496
+
497
+ if i%500 == 0:
498
+ print(i)
499
+ print(f"Large: {n_large}/{n_total} | {n_large/n_total*100:.2f}%")
500
+ if n_large > 0:
501
+ print(f"No Watermark: {n_large_nowm}/{n_large} | {n_large_nowm/n_large*100:.2f}%")
502
+
503
+
504
+
505
+ def example04():
506
+ # improved aesthetics
507
+ for i_shard in range(60208)[::-1]:
508
+ print(i_shard)
509
+ tars = "pipe:aws s3 cp s3://s-laion/improved-aesthetics-laion-2B-en-subsets/aesthetics_tars/{:06}.tar -".format(i_shard)
510
+ dataset = wds.WebDataset(tars)
511
+
512
+ def filter_keys(x):
513
+ try:
514
+ return ("jpg" in x) and ("txt" in x)
515
+ except Exception:
516
+ return False
517
+
518
+ def filter_size(x):
519
+ try:
520
+ return x['json']['original_width'] >= 512 and x['json']['original_height'] >= 512
521
+ except Exception:
522
+ return False
523
+
524
+ dataset = (dataset
525
+ .select(filter_keys)
526
+ .decode('pil', handler=wds.warn_and_continue))
527
+ try:
528
+ example = next(iter(dataset))
529
+ except Exception:
530
+ print(f"Error @ {i_shard}")
531
+
532
+
533
+ if __name__ == "__main__":
534
+ #example01()
535
+ #example02()
536
+ example03()
537
+ #example04()
ldm/data/lsun.py ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import numpy as np
3
+ import PIL
4
+ from PIL import Image
5
+ from torch.utils.data import Dataset
6
+ from torchvision import transforms
7
+
8
+
9
+ class LSUNBase(Dataset):
10
+ def __init__(self,
11
+ txt_file,
12
+ data_root,
13
+ size=None,
14
+ interpolation="bicubic",
15
+ flip_p=0.5
16
+ ):
17
+ self.data_paths = txt_file
18
+ self.data_root = data_root
19
+ with open(self.data_paths, "r") as f:
20
+ self.image_paths = f.read().splitlines()
21
+ self._length = len(self.image_paths)
22
+ self.labels = {
23
+ "relative_file_path_": [l for l in self.image_paths],
24
+ "file_path_": [os.path.join(self.data_root, l)
25
+ for l in self.image_paths],
26
+ }
27
+
28
+ self.size = size
29
+ self.interpolation = {"linear": PIL.Image.LINEAR,
30
+ "bilinear": PIL.Image.BILINEAR,
31
+ "bicubic": PIL.Image.BICUBIC,
32
+ "lanczos": PIL.Image.LANCZOS,
33
+ }[interpolation]
34
+ self.flip = transforms.RandomHorizontalFlip(p=flip_p)
35
+
36
+ def __len__(self):
37
+ return self._length
38
+
39
+ def __getitem__(self, i):
40
+ example = dict((k, self.labels[k][i]) for k in self.labels)
41
+ image = Image.open(example["file_path_"])
42
+ if not image.mode == "RGB":
43
+ image = image.convert("RGB")
44
+
45
+ # default to score-sde preprocessing
46
+ img = np.array(image).astype(np.uint8)
47
+ crop = min(img.shape[0], img.shape[1])
48
+ h, w, = img.shape[0], img.shape[1]
49
+ img = img[(h - crop) // 2:(h + crop) // 2,
50
+ (w - crop) // 2:(w + crop) // 2]
51
+
52
+ image = Image.fromarray(img)
53
+ if self.size is not None:
54
+ image = image.resize((self.size, self.size), resample=self.interpolation)
55
+
56
+ image = self.flip(image)
57
+ image = np.array(image).astype(np.uint8)
58
+ example["image"] = (image / 127.5 - 1.0).astype(np.float32)
59
+ return example
60
+
61
+
62
+ class LSUNChurchesTrain(LSUNBase):
63
+ def __init__(self, **kwargs):
64
+ super().__init__(txt_file="data/lsun/church_outdoor_train.txt", data_root="data/lsun/churches", **kwargs)
65
+
66
+
67
+ class LSUNChurchesValidation(LSUNBase):
68
+ def __init__(self, flip_p=0., **kwargs):
69
+ super().__init__(txt_file="data/lsun/church_outdoor_val.txt", data_root="data/lsun/churches",
70
+ flip_p=flip_p, **kwargs)
71
+
72
+
73
+ class LSUNBedroomsTrain(LSUNBase):
74
+ def __init__(self, **kwargs):
75
+ super().__init__(txt_file="data/lsun/bedrooms_train.txt", data_root="data/lsun/bedrooms", **kwargs)
76
+
77
+
78
+ class LSUNBedroomsValidation(LSUNBase):
79
+ def __init__(self, flip_p=0.0, **kwargs):
80
+ super().__init__(txt_file="data/lsun/bedrooms_val.txt", data_root="data/lsun/bedrooms",
81
+ flip_p=flip_p, **kwargs)
82
+
83
+
84
+ class LSUNCatsTrain(LSUNBase):
85
+ def __init__(self, **kwargs):
86
+ super().__init__(txt_file="data/lsun/cat_train.txt", data_root="data/lsun/cats", **kwargs)
87
+
88
+
89
+ class LSUNCatsValidation(LSUNBase):
90
+ def __init__(self, flip_p=0., **kwargs):
91
+ super().__init__(txt_file="data/lsun/cat_val.txt", data_root="data/lsun/cats",
92
+ flip_p=flip_p, **kwargs)
ldm/data/nerf_like.py ADDED
@@ -0,0 +1,165 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from torch.utils.data import Dataset
2
+ import os
3
+ import json
4
+ import numpy as np
5
+ import torch
6
+ import imageio
7
+ import math
8
+ import cv2
9
+ from torchvision import transforms
10
+
11
+ def cartesian_to_spherical(xyz):
12
+ ptsnew = np.hstack((xyz, np.zeros(xyz.shape)))
13
+ xy = xyz[:,0]**2 + xyz[:,1]**2
14
+ z = np.sqrt(xy + xyz[:,2]**2)
15
+ theta = np.arctan2(np.sqrt(xy), xyz[:,2]) # for elevation angle defined from Z-axis down
16
+ #ptsnew[:,4] = np.arctan2(xyz[:,2], np.sqrt(xy)) # for elevation angle defined from XY-plane up
17
+ azimuth = np.arctan2(xyz[:,1], xyz[:,0])
18
+ return np.array([theta, azimuth, z])
19
+
20
+
21
+ def get_T(T_target, T_cond):
22
+ theta_cond, azimuth_cond, z_cond = cartesian_to_spherical(T_cond[None, :])
23
+ theta_target, azimuth_target, z_target = cartesian_to_spherical(T_target[None, :])
24
+
25
+ d_theta = theta_target - theta_cond
26
+ d_azimuth = (azimuth_target - azimuth_cond) % (2 * math.pi)
27
+ d_z = z_target - z_cond
28
+
29
+ d_T = torch.tensor([d_theta.item(), math.sin(d_azimuth.item()), math.cos(d_azimuth.item()), d_z.item()])
30
+ return d_T
31
+
32
+ def get_spherical(T_target, T_cond):
33
+ theta_cond, azimuth_cond, z_cond = cartesian_to_spherical(T_cond[None, :])
34
+ theta_target, azimuth_target, z_target = cartesian_to_spherical(T_target[None, :])
35
+
36
+ d_theta = theta_target - theta_cond
37
+ d_azimuth = (azimuth_target - azimuth_cond) % (2 * math.pi)
38
+ d_z = z_target - z_cond
39
+
40
+ d_T = torch.tensor([math.degrees(d_theta.item()), math.degrees(d_azimuth.item()), d_z.item()])
41
+ return d_T
42
+
43
+ class RTMV(Dataset):
44
+ def __init__(self, root_dir='datasets/RTMV/google_scanned',\
45
+ first_K=64, resolution=256, load_target=False):
46
+ self.root_dir = root_dir
47
+ self.scene_list = sorted(next(os.walk(root_dir))[1])
48
+ self.resolution = resolution
49
+ self.first_K = first_K
50
+ self.load_target = load_target
51
+
52
+ def __len__(self):
53
+ return len(self.scene_list)
54
+
55
+ def __getitem__(self, idx):
56
+ scene_dir = os.path.join(self.root_dir, self.scene_list[idx])
57
+ with open(os.path.join(scene_dir, 'transforms.json'), "r") as f:
58
+ meta = json.load(f)
59
+ imgs = []
60
+ poses = []
61
+ for i_img in range(self.first_K):
62
+ meta_img = meta['frames'][i_img]
63
+
64
+ if i_img == 0 or self.load_target:
65
+ img_path = os.path.join(scene_dir, meta_img['file_path'])
66
+ img = imageio.imread(img_path)
67
+ img = cv2.resize(img, (self.resolution, self.resolution), interpolation = cv2.INTER_LINEAR)
68
+ imgs.append(img)
69
+
70
+ c2w = meta_img['transform_matrix']
71
+ poses.append(c2w)
72
+
73
+ imgs = (np.array(imgs) / 255.).astype(np.float32) # (RGBA) imgs
74
+ imgs = torch.tensor(self.blend_rgba(imgs)).permute(0, 3, 1, 2)
75
+ imgs = imgs * 2 - 1. # convert to stable diffusion range
76
+ poses = torch.tensor(np.array(poses).astype(np.float32))
77
+ return imgs, poses
78
+
79
+ def blend_rgba(self, img):
80
+ img = img[..., :3] * img[..., -1:] + (1. - img[..., -1:]) # blend A to RGB
81
+ return img
82
+
83
+
84
+ class GSO(Dataset):
85
+ def __init__(self, root_dir='datasets/GoogleScannedObjects',\
86
+ split='val', first_K=5, resolution=256, load_target=False, name='render_mvs'):
87
+ self.root_dir = root_dir
88
+ with open(os.path.join(root_dir, '%s.json' % split), "r") as f:
89
+ self.scene_list = json.load(f)
90
+ self.resolution = resolution
91
+ self.first_K = first_K
92
+ self.load_target = load_target
93
+ self.name = name
94
+
95
+ def __len__(self):
96
+ return len(self.scene_list)
97
+
98
+ def __getitem__(self, idx):
99
+ scene_dir = os.path.join(self.root_dir, self.scene_list[idx])
100
+ with open(os.path.join(scene_dir, 'transforms_%s.json' % self.name), "r") as f:
101
+ meta = json.load(f)
102
+ imgs = []
103
+ poses = []
104
+ for i_img in range(self.first_K):
105
+ meta_img = meta['frames'][i_img]
106
+
107
+ if i_img == 0 or self.load_target:
108
+ img_path = os.path.join(scene_dir, meta_img['file_path'])
109
+ img = imageio.imread(img_path)
110
+ img = cv2.resize(img, (self.resolution, self.resolution), interpolation = cv2.INTER_LINEAR)
111
+ imgs.append(img)
112
+
113
+ c2w = meta_img['transform_matrix']
114
+ poses.append(c2w)
115
+
116
+ imgs = (np.array(imgs) / 255.).astype(np.float32) # (RGBA) imgs
117
+ mask = imgs[:, :, :, -1]
118
+ imgs = torch.tensor(self.blend_rgba(imgs)).permute(0, 3, 1, 2)
119
+ imgs = imgs * 2 - 1. # convert to stable diffusion range
120
+ poses = torch.tensor(np.array(poses).astype(np.float32))
121
+ return imgs, poses
122
+
123
+ def blend_rgba(self, img):
124
+ img = img[..., :3] * img[..., -1:] + (1. - img[..., -1:]) # blend A to RGB
125
+ return img
126
+
127
+ class WILD(Dataset):
128
+ def __init__(self, root_dir='data/nerf_wild',\
129
+ first_K=33, resolution=256, load_target=False):
130
+ self.root_dir = root_dir
131
+ self.scene_list = sorted(next(os.walk(root_dir))[1])
132
+ self.resolution = resolution
133
+ self.first_K = first_K
134
+ self.load_target = load_target
135
+
136
+ def __len__(self):
137
+ return len(self.scene_list)
138
+
139
+ def __getitem__(self, idx):
140
+ scene_dir = os.path.join(self.root_dir, self.scene_list[idx])
141
+ with open(os.path.join(scene_dir, 'transforms_train.json'), "r") as f:
142
+ meta = json.load(f)
143
+ imgs = []
144
+ poses = []
145
+ for i_img in range(self.first_K):
146
+ meta_img = meta['frames'][i_img]
147
+
148
+ if i_img == 0 or self.load_target:
149
+ img_path = os.path.join(scene_dir, meta_img['file_path'])
150
+ img = imageio.imread(img_path + '.png')
151
+ img = cv2.resize(img, (self.resolution, self.resolution), interpolation = cv2.INTER_LINEAR)
152
+ imgs.append(img)
153
+
154
+ c2w = meta_img['transform_matrix']
155
+ poses.append(c2w)
156
+
157
+ imgs = (np.array(imgs) / 255.).astype(np.float32) # (RGBA) imgs
158
+ imgs = torch.tensor(self.blend_rgba(imgs)).permute(0, 3, 1, 2)
159
+ imgs = imgs * 2 - 1. # convert to stable diffusion range
160
+ poses = torch.tensor(np.array(poses).astype(np.float32))
161
+ return imgs, poses
162
+
163
+ def blend_rgba(self, img):
164
+ img = img[..., :3] * img[..., -1:] + (1. - img[..., -1:]) # blend A to RGB
165
+ return img
ldm/data/simple.py ADDED
@@ -0,0 +1,526 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Dict
2
+ import webdataset as wds
3
+ import numpy as np
4
+ from omegaconf import DictConfig, ListConfig
5
+ import torch
6
+ from torch.utils.data import Dataset
7
+ from pathlib import Path
8
+ import json
9
+ from PIL import Image
10
+ from torchvision import transforms
11
+ import torchvision
12
+ from einops import rearrange
13
+ from ldm.util import instantiate_from_config
14
+ from datasets import load_dataset
15
+ import pytorch_lightning as pl
16
+ import copy
17
+ import csv
18
+ import cv2
19
+ import random
20
+ import matplotlib.pyplot as plt
21
+ from torch.utils.data import DataLoader
22
+ import json
23
+ import os
24
+ import webdataset as wds
25
+ import math
26
+ from torch.utils.data.distributed import DistributedSampler
27
+
28
+ # Some hacky things to make experimentation easier
29
+ def make_transform_multi_folder_data(paths, caption_files=None, **kwargs):
30
+ ds = make_multi_folder_data(paths, caption_files, **kwargs)
31
+ return TransformDataset(ds)
32
+
33
+ def make_nfp_data(base_path):
34
+ dirs = list(Path(base_path).glob("*/"))
35
+ print(f"Found {len(dirs)} folders")
36
+ print(dirs)
37
+ tforms = [transforms.Resize(512), transforms.CenterCrop(512)]
38
+ datasets = [NfpDataset(x, image_transforms=copy.copy(tforms), default_caption="A view from a train window") for x in dirs]
39
+ return torch.utils.data.ConcatDataset(datasets)
40
+
41
+
42
+ class VideoDataset(Dataset):
43
+ def __init__(self, root_dir, image_transforms, caption_file, offset=8, n=2):
44
+ self.root_dir = Path(root_dir)
45
+ self.caption_file = caption_file
46
+ self.n = n
47
+ ext = "mp4"
48
+ self.paths = sorted(list(self.root_dir.rglob(f"*.{ext}")))
49
+ self.offset = offset
50
+
51
+ if isinstance(image_transforms, ListConfig):
52
+ image_transforms = [instantiate_from_config(tt) for tt in image_transforms]
53
+ image_transforms.extend([transforms.ToTensor(),
54
+ transforms.Lambda(lambda x: rearrange(x * 2. - 1., 'c h w -> h w c'))])
55
+ image_transforms = transforms.Compose(image_transforms)
56
+ self.tform = image_transforms
57
+ with open(self.caption_file) as f:
58
+ reader = csv.reader(f)
59
+ rows = [row for row in reader]
60
+ self.captions = dict(rows)
61
+
62
+ def __len__(self):
63
+ return len(self.paths)
64
+
65
+ def __getitem__(self, index):
66
+ for i in range(10):
67
+ try:
68
+ return self._load_sample(index)
69
+ except Exception:
70
+ # Not really good enough but...
71
+ print("uh oh")
72
+
73
+ def _load_sample(self, index):
74
+ n = self.n
75
+ filename = self.paths[index]
76
+ min_frame = 2*self.offset + 2
77
+ vid = cv2.VideoCapture(str(filename))
78
+ max_frames = int(vid.get(cv2.CAP_PROP_FRAME_COUNT))
79
+ curr_frame_n = random.randint(min_frame, max_frames)
80
+ vid.set(cv2.CAP_PROP_POS_FRAMES,curr_frame_n)
81
+ _, curr_frame = vid.read()
82
+
83
+ prev_frames = []
84
+ for i in range(n):
85
+ prev_frame_n = curr_frame_n - (i+1)*self.offset
86
+ vid.set(cv2.CAP_PROP_POS_FRAMES,prev_frame_n)
87
+ _, prev_frame = vid.read()
88
+ prev_frame = self.tform(Image.fromarray(prev_frame[...,::-1]))
89
+ prev_frames.append(prev_frame)
90
+
91
+ vid.release()
92
+ caption = self.captions[filename.name]
93
+ data = {
94
+ "image": self.tform(Image.fromarray(curr_frame[...,::-1])),
95
+ "prev": torch.cat(prev_frames, dim=-1),
96
+ "txt": caption
97
+ }
98
+ return data
99
+
100
+ # end hacky things
101
+
102
+
103
+ def make_tranforms(image_transforms):
104
+ # if isinstance(image_transforms, ListConfig):
105
+ # image_transforms = [instantiate_from_config(tt) for tt in image_transforms]
106
+ image_transforms = []
107
+ image_transforms.extend([transforms.ToTensor(),
108
+ transforms.Lambda(lambda x: rearrange(x * 2. - 1., 'c h w -> h w c'))])
109
+ image_transforms = transforms.Compose(image_transforms)
110
+ return image_transforms
111
+
112
+
113
+ def make_multi_folder_data(paths, caption_files=None, **kwargs):
114
+ """Make a concat dataset from multiple folders
115
+ Don't suport captions yet
116
+
117
+ If paths is a list, that's ok, if it's a Dict interpret it as:
118
+ k=folder v=n_times to repeat that
119
+ """
120
+ list_of_paths = []
121
+ if isinstance(paths, (Dict, DictConfig)):
122
+ assert caption_files is None, \
123
+ "Caption files not yet supported for repeats"
124
+ for folder_path, repeats in paths.items():
125
+ list_of_paths.extend([folder_path]*repeats)
126
+ paths = list_of_paths
127
+
128
+ if caption_files is not None:
129
+ datasets = [FolderData(p, caption_file=c, **kwargs) for (p, c) in zip(paths, caption_files)]
130
+ else:
131
+ datasets = [FolderData(p, **kwargs) for p in paths]
132
+ return torch.utils.data.ConcatDataset(datasets)
133
+
134
+
135
+
136
+ class NfpDataset(Dataset):
137
+ def __init__(self,
138
+ root_dir,
139
+ image_transforms=[],
140
+ ext="jpg",
141
+ default_caption="",
142
+ ) -> None:
143
+ """assume sequential frames and a deterministic transform"""
144
+
145
+ self.root_dir = Path(root_dir)
146
+ self.default_caption = default_caption
147
+
148
+ self.paths = sorted(list(self.root_dir.rglob(f"*.{ext}")))
149
+ self.tform = make_tranforms(image_transforms)
150
+
151
+ def __len__(self):
152
+ return len(self.paths) - 1
153
+
154
+
155
+ def __getitem__(self, index):
156
+ prev = self.paths[index]
157
+ curr = self.paths[index+1]
158
+ data = {}
159
+ data["image"] = self._load_im(curr)
160
+ data["prev"] = self._load_im(prev)
161
+ data["txt"] = self.default_caption
162
+ return data
163
+
164
+ def _load_im(self, filename):
165
+ im = Image.open(filename).convert("RGB")
166
+ return self.tform(im)
167
+
168
+ class ObjaverseDataModuleFromConfig(pl.LightningDataModule):
169
+ def __init__(self, root_dir, batch_size, total_view, train=None, validation=None,
170
+ test=None, num_workers=4, **kwargs):
171
+ super().__init__(self)
172
+ self.root_dir = root_dir
173
+ self.batch_size = batch_size
174
+ self.num_workers = num_workers
175
+ self.total_view = total_view
176
+
177
+ if train is not None:
178
+ dataset_config = train
179
+ if validation is not None:
180
+ dataset_config = validation
181
+
182
+ if 'image_transforms' in dataset_config:
183
+ image_transforms = [torchvision.transforms.Resize(dataset_config.image_transforms.size)]
184
+ else:
185
+ image_transforms = []
186
+ image_transforms.extend([transforms.ToTensor(),
187
+ transforms.Lambda(lambda x: rearrange(x * 2. - 1., 'c h w -> h w c'))])
188
+ self.image_transforms = torchvision.transforms.Compose(image_transforms)
189
+
190
+
191
+ def train_dataloader(self):
192
+ dataset = ObjaverseData(root_dir=self.root_dir, total_view=self.total_view, validation=False, \
193
+ image_transforms=self.image_transforms)
194
+ sampler = DistributedSampler(dataset)
195
+ return wds.WebLoader(dataset, batch_size=self.batch_size, num_workers=self.num_workers, shuffle=False, sampler=sampler)
196
+
197
+ def val_dataloader(self):
198
+ dataset = ObjaverseData(root_dir=self.root_dir, total_view=self.total_view, validation=True, \
199
+ image_transforms=self.image_transforms)
200
+ sampler = DistributedSampler(dataset)
201
+ return wds.WebLoader(dataset, batch_size=self.batch_size, num_workers=self.num_workers, shuffle=False)
202
+
203
+ def test_dataloader(self):
204
+ return wds.WebLoader(ObjaverseData(root_dir=self.root_dir, total_view=self.total_view, validation=self.validation),\
205
+ batch_size=self.batch_size, num_workers=self.num_workers, shuffle=False)
206
+
207
+
208
+ class ObjaverseData(Dataset):
209
+ def __init__(self,
210
+ root_dir='.objaverse/hf-objaverse-v1/views',
211
+ image_transforms=[],
212
+ ext="png",
213
+ default_trans=torch.zeros(3),
214
+ postprocess=None,
215
+ return_paths=False,
216
+ total_view=4,
217
+ validation=False
218
+ ) -> None:
219
+ """Create a dataset from a folder of images.
220
+ If you pass in a root directory it will be searched for images
221
+ ending in ext (ext can be a list)
222
+ """
223
+ self.root_dir = Path(root_dir)
224
+ self.default_trans = default_trans
225
+ self.return_paths = return_paths
226
+ if isinstance(postprocess, DictConfig):
227
+ postprocess = instantiate_from_config(postprocess)
228
+ self.postprocess = postprocess
229
+ self.total_view = total_view
230
+
231
+ if not isinstance(ext, (tuple, list, ListConfig)):
232
+ ext = [ext]
233
+
234
+ with open(os.path.join(root_dir, 'valid_paths.json')) as f:
235
+ self.paths = json.load(f)
236
+
237
+ total_objects = len(self.paths)
238
+ if validation:
239
+ self.paths = self.paths[math.floor(total_objects / 100. * 99.):] # used last 1% as validation
240
+ else:
241
+ self.paths = self.paths[:math.floor(total_objects / 100. * 99.)] # used first 99% as training
242
+ print('============= length of dataset %d =============' % len(self.paths))
243
+ self.tform = image_transforms
244
+
245
+ def __len__(self):
246
+ return len(self.paths)
247
+
248
+ def cartesian_to_spherical(self, xyz):
249
+ ptsnew = np.hstack((xyz, np.zeros(xyz.shape)))
250
+ xy = xyz[:,0]**2 + xyz[:,1]**2
251
+ z = np.sqrt(xy + xyz[:,2]**2)
252
+ theta = np.arctan2(np.sqrt(xy), xyz[:,2]) # for elevation angle defined from Z-axis down
253
+ #ptsnew[:,4] = np.arctan2(xyz[:,2], np.sqrt(xy)) # for elevation angle defined from XY-plane up
254
+ azimuth = np.arctan2(xyz[:,1], xyz[:,0])
255
+ return np.array([theta, azimuth, z])
256
+
257
+ def get_T(self, target_RT, cond_RT):
258
+ R, T = target_RT[:3, :3], target_RT[:, -1]
259
+ T_target = -R.T @ T
260
+
261
+ R, T = cond_RT[:3, :3], cond_RT[:, -1]
262
+ T_cond = -R.T @ T
263
+
264
+ theta_cond, azimuth_cond, z_cond = self.cartesian_to_spherical(T_cond[None, :])
265
+ theta_target, azimuth_target, z_target = self.cartesian_to_spherical(T_target[None, :])
266
+
267
+ d_theta = theta_target - theta_cond
268
+ d_azimuth = (azimuth_target - azimuth_cond) % (2 * math.pi)
269
+ d_z = z_target - z_cond
270
+
271
+ d_T = torch.tensor([d_theta.item(), math.sin(d_azimuth.item()), math.cos(d_azimuth.item()), d_z.item()])
272
+ return d_T
273
+
274
+ def load_im(self, path, color):
275
+ '''
276
+ replace background pixel with random color in rendering
277
+ '''
278
+ try:
279
+ img = plt.imread(path)
280
+ except:
281
+ print(path)
282
+ sys.exit()
283
+ img[img[:, :, -1] == 0.] = color
284
+ img = Image.fromarray(np.uint8(img[:, :, :3] * 255.))
285
+ return img
286
+
287
+ def __getitem__(self, index):
288
+
289
+ data = {}
290
+ if self.paths[index][-2:] == '_1': # dirty fix for rendering dataset twice
291
+ total_view = 8
292
+ else:
293
+ total_view = 4
294
+ index_target, index_cond = random.sample(range(total_view), 2) # without replacement
295
+ filename = os.path.join(self.root_dir, self.paths[index])
296
+
297
+ # print(self.paths[index])
298
+
299
+ if self.return_paths:
300
+ data["path"] = str(filename)
301
+
302
+ color = [1., 1., 1., 1.]
303
+
304
+ try:
305
+ target_im = self.process_im(self.load_im(os.path.join(filename, '%03d.png' % index_target), color))
306
+ cond_im = self.process_im(self.load_im(os.path.join(filename, '%03d.png' % index_cond), color))
307
+ target_RT = np.load(os.path.join(filename, '%03d.npy' % index_target))
308
+ cond_RT = np.load(os.path.join(filename, '%03d.npy' % index_cond))
309
+ except:
310
+ # very hacky solution, sorry about this
311
+ filename = os.path.join(self.root_dir, '692db5f2d3a04bb286cb977a7dba903e_1') # this one we know is valid
312
+ target_im = self.process_im(self.load_im(os.path.join(filename, '%03d.png' % index_target), color))
313
+ cond_im = self.process_im(self.load_im(os.path.join(filename, '%03d.png' % index_cond), color))
314
+ target_RT = np.load(os.path.join(filename, '%03d.npy' % index_target))
315
+ cond_RT = np.load(os.path.join(filename, '%03d.npy' % index_cond))
316
+ target_im = torch.zeros_like(target_im)
317
+ cond_im = torch.zeros_like(cond_im)
318
+
319
+ data["image_target"] = target_im
320
+ data["image_cond"] = cond_im
321
+ data["T"] = self.get_T(target_RT, cond_RT)
322
+
323
+ if self.postprocess is not None:
324
+ data = self.postprocess(data)
325
+
326
+ return data
327
+
328
+ def process_im(self, im):
329
+ im = im.convert("RGB")
330
+ return self.tform(im)
331
+
332
+ class FolderData(Dataset):
333
+ def __init__(self,
334
+ root_dir,
335
+ caption_file=None,
336
+ image_transforms=[],
337
+ ext="jpg",
338
+ default_caption="",
339
+ postprocess=None,
340
+ return_paths=False,
341
+ ) -> None:
342
+ """Create a dataset from a folder of images.
343
+ If you pass in a root directory it will be searched for images
344
+ ending in ext (ext can be a list)
345
+ """
346
+ self.root_dir = Path(root_dir)
347
+ self.default_caption = default_caption
348
+ self.return_paths = return_paths
349
+ if isinstance(postprocess, DictConfig):
350
+ postprocess = instantiate_from_config(postprocess)
351
+ self.postprocess = postprocess
352
+ if caption_file is not None:
353
+ with open(caption_file, "rt") as f:
354
+ ext = Path(caption_file).suffix.lower()
355
+ if ext == ".json":
356
+ captions = json.load(f)
357
+ elif ext == ".jsonl":
358
+ lines = f.readlines()
359
+ lines = [json.loads(x) for x in lines]
360
+ captions = {x["file_name"]: x["text"].strip("\n") for x in lines}
361
+ else:
362
+ raise ValueError(f"Unrecognised format: {ext}")
363
+ self.captions = captions
364
+ else:
365
+ self.captions = None
366
+
367
+ if not isinstance(ext, (tuple, list, ListConfig)):
368
+ ext = [ext]
369
+
370
+ # Only used if there is no caption file
371
+ self.paths = []
372
+ for e in ext:
373
+ self.paths.extend(sorted(list(self.root_dir.rglob(f"*.{e}"))))
374
+ self.tform = make_tranforms(image_transforms)
375
+
376
+ def __len__(self):
377
+ if self.captions is not None:
378
+ return len(self.captions.keys())
379
+ else:
380
+ return len(self.paths)
381
+
382
+ def __getitem__(self, index):
383
+ data = {}
384
+ if self.captions is not None:
385
+ chosen = list(self.captions.keys())[index]
386
+ caption = self.captions.get(chosen, None)
387
+ if caption is None:
388
+ caption = self.default_caption
389
+ filename = self.root_dir/chosen
390
+ else:
391
+ filename = self.paths[index]
392
+
393
+ if self.return_paths:
394
+ data["path"] = str(filename)
395
+
396
+ im = Image.open(filename).convert("RGB")
397
+ im = self.process_im(im)
398
+ data["image"] = im
399
+
400
+ if self.captions is not None:
401
+ data["txt"] = caption
402
+ else:
403
+ data["txt"] = self.default_caption
404
+
405
+ if self.postprocess is not None:
406
+ data = self.postprocess(data)
407
+
408
+ return data
409
+
410
+ def process_im(self, im):
411
+ im = im.convert("RGB")
412
+ return self.tform(im)
413
+ import random
414
+
415
+ class TransformDataset():
416
+ def __init__(self, ds, extra_label="sksbspic"):
417
+ self.ds = ds
418
+ self.extra_label = extra_label
419
+ self.transforms = {
420
+ "align": transforms.Resize(768),
421
+ "centerzoom": transforms.CenterCrop(768),
422
+ "randzoom": transforms.RandomCrop(768),
423
+ }
424
+
425
+
426
+ def __getitem__(self, index):
427
+ data = self.ds[index]
428
+
429
+ im = data['image']
430
+ im = im.permute(2,0,1)
431
+ # In case data is smaller than expected
432
+ im = transforms.Resize(1024)(im)
433
+
434
+ tform_name = random.choice(list(self.transforms.keys()))
435
+ im = self.transforms[tform_name](im)
436
+
437
+ im = im.permute(1,2,0)
438
+
439
+ data['image'] = im
440
+ data['txt'] = data['txt'] + f" {self.extra_label} {tform_name}"
441
+
442
+ return data
443
+
444
+ def __len__(self):
445
+ return len(self.ds)
446
+
447
+ def hf_dataset(
448
+ name,
449
+ image_transforms=[],
450
+ image_column="image",
451
+ text_column="text",
452
+ split='train',
453
+ image_key='image',
454
+ caption_key='txt',
455
+ ):
456
+ """Make huggingface dataset with appropriate list of transforms applied
457
+ """
458
+ ds = load_dataset(name, split=split)
459
+ tform = make_tranforms(image_transforms)
460
+
461
+ assert image_column in ds.column_names, f"Didn't find column {image_column} in {ds.column_names}"
462
+ assert text_column in ds.column_names, f"Didn't find column {text_column} in {ds.column_names}"
463
+
464
+ def pre_process(examples):
465
+ processed = {}
466
+ processed[image_key] = [tform(im) for im in examples[image_column]]
467
+ processed[caption_key] = examples[text_column]
468
+ return processed
469
+
470
+ ds.set_transform(pre_process)
471
+ return ds
472
+
473
+ class TextOnly(Dataset):
474
+ def __init__(self, captions, output_size, image_key="image", caption_key="txt", n_gpus=1):
475
+ """Returns only captions with dummy images"""
476
+ self.output_size = output_size
477
+ self.image_key = image_key
478
+ self.caption_key = caption_key
479
+ if isinstance(captions, Path):
480
+ self.captions = self._load_caption_file(captions)
481
+ else:
482
+ self.captions = captions
483
+
484
+ if n_gpus > 1:
485
+ # hack to make sure that all the captions appear on each gpu
486
+ repeated = [n_gpus*[x] for x in self.captions]
487
+ self.captions = []
488
+ [self.captions.extend(x) for x in repeated]
489
+
490
+ def __len__(self):
491
+ return len(self.captions)
492
+
493
+ def __getitem__(self, index):
494
+ dummy_im = torch.zeros(3, self.output_size, self.output_size)
495
+ dummy_im = rearrange(dummy_im * 2. - 1., 'c h w -> h w c')
496
+ return {self.image_key: dummy_im, self.caption_key: self.captions[index]}
497
+
498
+ def _load_caption_file(self, filename):
499
+ with open(filename, 'rt') as f:
500
+ captions = f.readlines()
501
+ return [x.strip('\n') for x in captions]
502
+
503
+
504
+
505
+ import random
506
+ import json
507
+ class IdRetreivalDataset(FolderData):
508
+ def __init__(self, ret_file, *args, **kwargs):
509
+ super().__init__(*args, **kwargs)
510
+ with open(ret_file, "rt") as f:
511
+ self.ret = json.load(f)
512
+
513
+ def __getitem__(self, index):
514
+ data = super().__getitem__(index)
515
+ key = self.paths[index].name
516
+ matches = self.ret[key]
517
+ if len(matches) > 0:
518
+ retreived = random.choice(matches)
519
+ else:
520
+ retreived = key
521
+ filename = self.root_dir/retreived
522
+ im = Image.open(filename).convert("RGB")
523
+ im = self.process_im(im)
524
+ # data["match"] = im
525
+ data["match"] = torch.cat((data["image"], im), dim=-1)
526
+ return data
ldm/data/sync_dreamer.py ADDED
@@ -0,0 +1,132 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pytorch_lightning as pl
2
+ import numpy as np
3
+ import torch
4
+ import PIL
5
+ import os
6
+ from skimage.io import imread
7
+ import webdataset as wds
8
+ import PIL.Image as Image
9
+ from torch.utils.data import Dataset
10
+ from torch.utils.data.distributed import DistributedSampler
11
+ from pathlib import Path
12
+
13
+ from ldm.base_utils import read_pickle, pose_inverse
14
+ import torchvision.transforms as transforms
15
+ import torchvision
16
+ from einops import rearrange
17
+
18
+ from ldm.util import prepare_inputs
19
+
20
+
21
+ class SyncDreamerTrainData(Dataset):
22
+ def __init__(self, target_dir, input_dir, uid_set_pkl, image_size=256):
23
+ self.default_image_size = 256
24
+ self.image_size = image_size
25
+ self.target_dir = Path(target_dir)
26
+ self.input_dir = Path(input_dir)
27
+
28
+ self.uids = read_pickle(uid_set_pkl)
29
+ print('============= length of dataset %d =============' % len(self.uids))
30
+
31
+ image_transforms = []
32
+ image_transforms.extend([transforms.ToTensor(), transforms.Lambda(lambda x: rearrange(x * 2. - 1., 'c h w -> h w c'))])
33
+ self.image_transforms = torchvision.transforms.Compose(image_transforms)
34
+ self.num_images = 16
35
+
36
+ def __len__(self):
37
+ return len(self.uids)
38
+
39
+ def load_im(self, path):
40
+ img = imread(path)
41
+ img = img.astype(np.float32) / 255.0
42
+ mask = img[:,:,3:]
43
+ img[:,:,:3] = img[:,:,:3] * mask + 1 - mask # white background
44
+ img = Image.fromarray(np.uint8(img[:, :, :3] * 255.))
45
+ return img, mask
46
+
47
+ def process_im(self, im):
48
+ im = im.convert("RGB")
49
+ im = im.resize((self.image_size, self.image_size), resample=PIL.Image.BICUBIC)
50
+ return self.image_transforms(im)
51
+
52
+ def load_index(self, filename, index):
53
+ img, _ = self.load_im(os.path.join(filename, '%03d.png' % index))
54
+ img = self.process_im(img)
55
+ return img
56
+
57
+ def get_data_for_index(self, index):
58
+ target_dir = os.path.join(self.target_dir, self.uids[index])
59
+ input_dir = os.path.join(self.input_dir, self.uids[index])
60
+
61
+ views = np.arange(0, self.num_images)
62
+ start_view_index = np.random.randint(0, self.num_images)
63
+ views = (views + start_view_index) % self.num_images
64
+
65
+ target_images = []
66
+ for si, target_index in enumerate(views):
67
+ img = self.load_index(target_dir, target_index)
68
+ target_images.append(img)
69
+ target_images = torch.stack(target_images, 0)
70
+ input_img = self.load_index(input_dir, start_view_index)
71
+
72
+ K, azimuths, elevations, distances, cam_poses = read_pickle(os.path.join(input_dir, f'meta.pkl'))
73
+ input_elevation = torch.from_numpy(elevations[start_view_index:start_view_index+1].astype(np.float32))
74
+ return {"target_image": target_images, "input_image": input_img, "input_elevation": input_elevation}
75
+
76
+ def __getitem__(self, index):
77
+ data = self.get_data_for_index(index)
78
+ return data
79
+
80
+ class SyncDreamerEvalData(Dataset):
81
+ def __init__(self, image_dir):
82
+ self.image_size = 256
83
+ self.image_dir = Path(image_dir)
84
+ self.crop_size = 20
85
+
86
+ self.fns = []
87
+ for fn in Path(image_dir).iterdir():
88
+ if fn.suffix=='.png':
89
+ self.fns.append(fn)
90
+ print('============= length of dataset %d =============' % len(self.fns))
91
+
92
+ def __len__(self):
93
+ return len(self.fns)
94
+
95
+ def get_data_for_index(self, index):
96
+ input_img_fn = self.fns[index]
97
+ elevation = int(Path(input_img_fn).stem.split('-')[-1])
98
+ return prepare_inputs(input_img_fn, elevation, 200)
99
+
100
+ def __getitem__(self, index):
101
+ return self.get_data_for_index(index)
102
+
103
+ class SyncDreamerDataset(pl.LightningDataModule):
104
+ def __init__(self, target_dir, input_dir, validation_dir, batch_size, uid_set_pkl, image_size=256, num_workers=4, seed=0, **kwargs):
105
+ super().__init__()
106
+ self.target_dir = target_dir
107
+ self.input_dir = input_dir
108
+ self.validation_dir = validation_dir
109
+ self.batch_size = batch_size
110
+ self.num_workers = num_workers
111
+ self.uid_set_pkl = uid_set_pkl
112
+ self.seed = seed
113
+ self.additional_args = kwargs
114
+ self.image_size = image_size
115
+
116
+ def setup(self, stage):
117
+ if stage in ['fit']:
118
+ self.train_dataset = SyncDreamerTrainData(self.target_dir, self.input_dir, uid_set_pkl=self.uid_set_pkl, image_size=256)
119
+ self.val_dataset = SyncDreamerEvalData(image_dir=self.validation_dir)
120
+ else:
121
+ raise NotImplementedError
122
+
123
+ def train_dataloader(self):
124
+ sampler = DistributedSampler(self.train_dataset, seed=self.seed)
125
+ return wds.WebLoader(self.train_dataset, batch_size=self.batch_size, num_workers=self.num_workers, shuffle=False, sampler=sampler)
126
+
127
+ def val_dataloader(self):
128
+ loader = wds.WebLoader(self.val_dataset, batch_size=self.batch_size, num_workers=self.num_workers, shuffle=False)
129
+ return loader
130
+
131
+ def test_dataloader(self):
132
+ return wds.WebLoader(self.val_dataset, batch_size=self.batch_size, num_workers=self.num_workers, shuffle=False)
ldm/lr_scheduler.py ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+
3
+
4
+ class LambdaWarmUpCosineScheduler:
5
+ """
6
+ note: use with a base_lr of 1.0
7
+ """
8
+ def __init__(self, warm_up_steps, lr_min, lr_max, lr_start, max_decay_steps, verbosity_interval=0):
9
+ self.lr_warm_up_steps = warm_up_steps
10
+ self.lr_start = lr_start
11
+ self.lr_min = lr_min
12
+ self.lr_max = lr_max
13
+ self.lr_max_decay_steps = max_decay_steps
14
+ self.last_lr = 0.
15
+ self.verbosity_interval = verbosity_interval
16
+
17
+ def schedule(self, n, **kwargs):
18
+ if self.verbosity_interval > 0:
19
+ if n % self.verbosity_interval == 0: print(f"current step: {n}, recent lr-multiplier: {self.last_lr}")
20
+ if n < self.lr_warm_up_steps:
21
+ lr = (self.lr_max - self.lr_start) / self.lr_warm_up_steps * n + self.lr_start
22
+ self.last_lr = lr
23
+ return lr
24
+ else:
25
+ t = (n - self.lr_warm_up_steps) / (self.lr_max_decay_steps - self.lr_warm_up_steps)
26
+ t = min(t, 1.0)
27
+ lr = self.lr_min + 0.5 * (self.lr_max - self.lr_min) * (
28
+ 1 + np.cos(t * np.pi))
29
+ self.last_lr = lr
30
+ return lr
31
+
32
+ def __call__(self, n, **kwargs):
33
+ return self.schedule(n,**kwargs)
34
+
35
+
36
+ class LambdaWarmUpCosineScheduler2:
37
+ """
38
+ supports repeated iterations, configurable via lists
39
+ note: use with a base_lr of 1.0.
40
+ """
41
+ def __init__(self, warm_up_steps, f_min, f_max, f_start, cycle_lengths, verbosity_interval=0):
42
+ assert len(warm_up_steps) == len(f_min) == len(f_max) == len(f_start) == len(cycle_lengths)
43
+ self.lr_warm_up_steps = warm_up_steps
44
+ self.f_start = f_start
45
+ self.f_min = f_min
46
+ self.f_max = f_max
47
+ self.cycle_lengths = cycle_lengths
48
+ self.cum_cycles = np.cumsum([0] + list(self.cycle_lengths))
49
+ self.last_f = 0.
50
+ self.verbosity_interval = verbosity_interval
51
+
52
+ def find_in_interval(self, n):
53
+ interval = 0
54
+ for cl in self.cum_cycles[1:]:
55
+ if n <= cl:
56
+ return interval
57
+ interval += 1
58
+
59
+ def schedule(self, n, **kwargs):
60
+ cycle = self.find_in_interval(n)
61
+ n = n - self.cum_cycles[cycle]
62
+ if self.verbosity_interval > 0:
63
+ if n % self.verbosity_interval == 0: print(f"current step: {n}, recent lr-multiplier: {self.last_f}, "
64
+ f"current cycle {cycle}")
65
+ if n < self.lr_warm_up_steps[cycle]:
66
+ f = (self.f_max[cycle] - self.f_start[cycle]) / self.lr_warm_up_steps[cycle] * n + self.f_start[cycle]
67
+ self.last_f = f
68
+ return f
69
+ else:
70
+ t = (n - self.lr_warm_up_steps[cycle]) / (self.cycle_lengths[cycle] - self.lr_warm_up_steps[cycle])
71
+ t = min(t, 1.0)
72
+ f = self.f_min[cycle] + 0.5 * (self.f_max[cycle] - self.f_min[cycle]) * (
73
+ 1 + np.cos(t * np.pi))
74
+ self.last_f = f
75
+ return f
76
+
77
+ def __call__(self, n, **kwargs):
78
+ return self.schedule(n, **kwargs)
79
+
80
+
81
+ class LambdaLinearScheduler(LambdaWarmUpCosineScheduler2):
82
+
83
+ def schedule(self, n, **kwargs):
84
+ cycle = self.find_in_interval(n)
85
+ n = n - self.cum_cycles[cycle]
86
+ if self.verbosity_interval > 0:
87
+ if n % self.verbosity_interval == 0: print(f"current step: {n}, recent lr-multiplier: {self.last_f}, "
88
+ f"current cycle {cycle}")
89
+
90
+ if n < self.lr_warm_up_steps[cycle]:
91
+ f = (self.f_max[cycle] - self.f_start[cycle]) / self.lr_warm_up_steps[cycle] * n + self.f_start[cycle]
92
+ self.last_f = f
93
+ return f
94
+ else:
95
+ f = self.f_min[cycle] + (self.f_max[cycle] - self.f_min[cycle]) * (self.cycle_lengths[cycle] - n) / (self.cycle_lengths[cycle])
96
+ self.last_f = f
97
+ return f
98
+
ldm/models/autoencoder.py ADDED
@@ -0,0 +1,443 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import pytorch_lightning as pl
3
+ import torch.nn.functional as F
4
+ from contextlib import contextmanager
5
+
6
+ from taming.modules.vqvae.quantize import VectorQuantizer2 as VectorQuantizer
7
+
8
+ from ldm.modules.diffusionmodules.model import Encoder, Decoder
9
+ from ldm.modules.distributions.distributions import DiagonalGaussianDistribution
10
+
11
+ from ldm.util import instantiate_from_config
12
+
13
+
14
+ class VQModel(pl.LightningModule):
15
+ def __init__(self,
16
+ ddconfig,
17
+ lossconfig,
18
+ n_embed,
19
+ embed_dim,
20
+ ckpt_path=None,
21
+ ignore_keys=[],
22
+ image_key="image",
23
+ colorize_nlabels=None,
24
+ monitor=None,
25
+ batch_resize_range=None,
26
+ scheduler_config=None,
27
+ lr_g_factor=1.0,
28
+ remap=None,
29
+ sane_index_shape=False, # tell vector quantizer to return indices as bhw
30
+ use_ema=False
31
+ ):
32
+ super().__init__()
33
+ self.embed_dim = embed_dim
34
+ self.n_embed = n_embed
35
+ self.image_key = image_key
36
+ self.encoder = Encoder(**ddconfig)
37
+ self.decoder = Decoder(**ddconfig)
38
+ self.loss = instantiate_from_config(lossconfig)
39
+ self.quantize = VectorQuantizer(n_embed, embed_dim, beta=0.25,
40
+ remap=remap,
41
+ sane_index_shape=sane_index_shape)
42
+ self.quant_conv = torch.nn.Conv2d(ddconfig["z_channels"], embed_dim, 1)
43
+ self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
44
+ if colorize_nlabels is not None:
45
+ assert type(colorize_nlabels)==int
46
+ self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
47
+ if monitor is not None:
48
+ self.monitor = monitor
49
+ self.batch_resize_range = batch_resize_range
50
+ if self.batch_resize_range is not None:
51
+ print(f"{self.__class__.__name__}: Using per-batch resizing in range {batch_resize_range}.")
52
+
53
+ self.use_ema = use_ema
54
+ if self.use_ema:
55
+ self.model_ema = LitEma(self)
56
+ print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
57
+
58
+ if ckpt_path is not None:
59
+ self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
60
+ self.scheduler_config = scheduler_config
61
+ self.lr_g_factor = lr_g_factor
62
+
63
+ @contextmanager
64
+ def ema_scope(self, context=None):
65
+ if self.use_ema:
66
+ self.model_ema.store(self.parameters())
67
+ self.model_ema.copy_to(self)
68
+ if context is not None:
69
+ print(f"{context}: Switched to EMA weights")
70
+ try:
71
+ yield None
72
+ finally:
73
+ if self.use_ema:
74
+ self.model_ema.restore(self.parameters())
75
+ if context is not None:
76
+ print(f"{context}: Restored training weights")
77
+
78
+ def init_from_ckpt(self, path, ignore_keys=list()):
79
+ sd = torch.load(path, map_location="cpu")["state_dict"]
80
+ keys = list(sd.keys())
81
+ for k in keys:
82
+ for ik in ignore_keys:
83
+ if k.startswith(ik):
84
+ print("Deleting key {} from state_dict.".format(k))
85
+ del sd[k]
86
+ missing, unexpected = self.load_state_dict(sd, strict=False)
87
+ print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
88
+ if len(missing) > 0:
89
+ print(f"Missing Keys: {missing}")
90
+ print(f"Unexpected Keys: {unexpected}")
91
+
92
+ def on_train_batch_end(self, *args, **kwargs):
93
+ if self.use_ema:
94
+ self.model_ema(self)
95
+
96
+ def encode(self, x):
97
+ h = self.encoder(x)
98
+ h = self.quant_conv(h)
99
+ quant, emb_loss, info = self.quantize(h)
100
+ return quant, emb_loss, info
101
+
102
+ def encode_to_prequant(self, x):
103
+ h = self.encoder(x)
104
+ h = self.quant_conv(h)
105
+ return h
106
+
107
+ def decode(self, quant):
108
+ quant = self.post_quant_conv(quant)
109
+ dec = self.decoder(quant)
110
+ return dec
111
+
112
+ def decode_code(self, code_b):
113
+ quant_b = self.quantize.embed_code(code_b)
114
+ dec = self.decode(quant_b)
115
+ return dec
116
+
117
+ def forward(self, input, return_pred_indices=False):
118
+ quant, diff, (_,_,ind) = self.encode(input)
119
+ dec = self.decode(quant)
120
+ if return_pred_indices:
121
+ return dec, diff, ind
122
+ return dec, diff
123
+
124
+ def get_input(self, batch, k):
125
+ x = batch[k]
126
+ if len(x.shape) == 3:
127
+ x = x[..., None]
128
+ x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float()
129
+ if self.batch_resize_range is not None:
130
+ lower_size = self.batch_resize_range[0]
131
+ upper_size = self.batch_resize_range[1]
132
+ if self.global_step <= 4:
133
+ # do the first few batches with max size to avoid later oom
134
+ new_resize = upper_size
135
+ else:
136
+ new_resize = np.random.choice(np.arange(lower_size, upper_size+16, 16))
137
+ if new_resize != x.shape[2]:
138
+ x = F.interpolate(x, size=new_resize, mode="bicubic")
139
+ x = x.detach()
140
+ return x
141
+
142
+ def training_step(self, batch, batch_idx, optimizer_idx):
143
+ # https://github.com/pytorch/pytorch/issues/37142
144
+ # try not to fool the heuristics
145
+ x = self.get_input(batch, self.image_key)
146
+ xrec, qloss, ind = self(x, return_pred_indices=True)
147
+
148
+ if optimizer_idx == 0:
149
+ # autoencode
150
+ aeloss, log_dict_ae = self.loss(qloss, x, xrec, optimizer_idx, self.global_step,
151
+ last_layer=self.get_last_layer(), split="train",
152
+ predicted_indices=ind)
153
+
154
+ self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=True)
155
+ return aeloss
156
+
157
+ if optimizer_idx == 1:
158
+ # discriminator
159
+ discloss, log_dict_disc = self.loss(qloss, x, xrec, optimizer_idx, self.global_step,
160
+ last_layer=self.get_last_layer(), split="train")
161
+ self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=True)
162
+ return discloss
163
+
164
+ def validation_step(self, batch, batch_idx):
165
+ log_dict = self._validation_step(batch, batch_idx)
166
+ with self.ema_scope():
167
+ log_dict_ema = self._validation_step(batch, batch_idx, suffix="_ema")
168
+ return log_dict
169
+
170
+ def _validation_step(self, batch, batch_idx, suffix=""):
171
+ x = self.get_input(batch, self.image_key)
172
+ xrec, qloss, ind = self(x, return_pred_indices=True)
173
+ aeloss, log_dict_ae = self.loss(qloss, x, xrec, 0,
174
+ self.global_step,
175
+ last_layer=self.get_last_layer(),
176
+ split="val"+suffix,
177
+ predicted_indices=ind
178
+ )
179
+
180
+ discloss, log_dict_disc = self.loss(qloss, x, xrec, 1,
181
+ self.global_step,
182
+ last_layer=self.get_last_layer(),
183
+ split="val"+suffix,
184
+ predicted_indices=ind
185
+ )
186
+ rec_loss = log_dict_ae[f"val{suffix}/rec_loss"]
187
+ self.log(f"val{suffix}/rec_loss", rec_loss,
188
+ prog_bar=True, logger=True, on_step=False, on_epoch=True, sync_dist=True)
189
+ self.log(f"val{suffix}/aeloss", aeloss,
190
+ prog_bar=True, logger=True, on_step=False, on_epoch=True, sync_dist=True)
191
+ if version.parse(pl.__version__) >= version.parse('1.4.0'):
192
+ del log_dict_ae[f"val{suffix}/rec_loss"]
193
+ self.log_dict(log_dict_ae)
194
+ self.log_dict(log_dict_disc)
195
+ return self.log_dict
196
+
197
+ def configure_optimizers(self):
198
+ lr_d = self.learning_rate
199
+ lr_g = self.lr_g_factor*self.learning_rate
200
+ print("lr_d", lr_d)
201
+ print("lr_g", lr_g)
202
+ opt_ae = torch.optim.Adam(list(self.encoder.parameters())+
203
+ list(self.decoder.parameters())+
204
+ list(self.quantize.parameters())+
205
+ list(self.quant_conv.parameters())+
206
+ list(self.post_quant_conv.parameters()),
207
+ lr=lr_g, betas=(0.5, 0.9))
208
+ opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(),
209
+ lr=lr_d, betas=(0.5, 0.9))
210
+
211
+ if self.scheduler_config is not None:
212
+ scheduler = instantiate_from_config(self.scheduler_config)
213
+
214
+ print("Setting up LambdaLR scheduler...")
215
+ scheduler = [
216
+ {
217
+ 'scheduler': LambdaLR(opt_ae, lr_lambda=scheduler.schedule),
218
+ 'interval': 'step',
219
+ 'frequency': 1
220
+ },
221
+ {
222
+ 'scheduler': LambdaLR(opt_disc, lr_lambda=scheduler.schedule),
223
+ 'interval': 'step',
224
+ 'frequency': 1
225
+ },
226
+ ]
227
+ return [opt_ae, opt_disc], scheduler
228
+ return [opt_ae, opt_disc], []
229
+
230
+ def get_last_layer(self):
231
+ return self.decoder.conv_out.weight
232
+
233
+ def log_images(self, batch, only_inputs=False, plot_ema=False, **kwargs):
234
+ log = dict()
235
+ x = self.get_input(batch, self.image_key)
236
+ x = x.to(self.device)
237
+ if only_inputs:
238
+ log["inputs"] = x
239
+ return log
240
+ xrec, _ = self(x)
241
+ if x.shape[1] > 3:
242
+ # colorize with random projection
243
+ assert xrec.shape[1] > 3
244
+ x = self.to_rgb(x)
245
+ xrec = self.to_rgb(xrec)
246
+ log["inputs"] = x
247
+ log["reconstructions"] = xrec
248
+ if plot_ema:
249
+ with self.ema_scope():
250
+ xrec_ema, _ = self(x)
251
+ if x.shape[1] > 3: xrec_ema = self.to_rgb(xrec_ema)
252
+ log["reconstructions_ema"] = xrec_ema
253
+ return log
254
+
255
+ def to_rgb(self, x):
256
+ assert self.image_key == "segmentation"
257
+ if not hasattr(self, "colorize"):
258
+ self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
259
+ x = F.conv2d(x, weight=self.colorize)
260
+ x = 2.*(x-x.min())/(x.max()-x.min()) - 1.
261
+ return x
262
+
263
+
264
+ class VQModelInterface(VQModel):
265
+ def __init__(self, embed_dim, *args, **kwargs):
266
+ super().__init__(embed_dim=embed_dim, *args, **kwargs)
267
+ self.embed_dim = embed_dim
268
+
269
+ def encode(self, x):
270
+ h = self.encoder(x)
271
+ h = self.quant_conv(h)
272
+ return h
273
+
274
+ def decode(self, h, force_not_quantize=False):
275
+ # also go through quantization layer
276
+ if not force_not_quantize:
277
+ quant, emb_loss, info = self.quantize(h)
278
+ else:
279
+ quant = h
280
+ quant = self.post_quant_conv(quant)
281
+ dec = self.decoder(quant)
282
+ return dec
283
+
284
+
285
+ class AutoencoderKL(pl.LightningModule):
286
+ def __init__(self,
287
+ ddconfig,
288
+ lossconfig,
289
+ embed_dim,
290
+ ckpt_path=None,
291
+ ignore_keys=[],
292
+ image_key="image",
293
+ colorize_nlabels=None,
294
+ monitor=None,
295
+ ):
296
+ super().__init__()
297
+ self.image_key = image_key
298
+ self.encoder = Encoder(**ddconfig)
299
+ self.decoder = Decoder(**ddconfig)
300
+ self.loss = instantiate_from_config(lossconfig)
301
+ assert ddconfig["double_z"]
302
+ self.quant_conv = torch.nn.Conv2d(2*ddconfig["z_channels"], 2*embed_dim, 1)
303
+ self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
304
+ self.embed_dim = embed_dim
305
+ if colorize_nlabels is not None:
306
+ assert type(colorize_nlabels)==int
307
+ self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
308
+ if monitor is not None:
309
+ self.monitor = monitor
310
+ if ckpt_path is not None:
311
+ self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
312
+
313
+ def init_from_ckpt(self, path, ignore_keys=list()):
314
+ sd = torch.load(path, map_location="cpu")["state_dict"]
315
+ keys = list(sd.keys())
316
+ for k in keys:
317
+ for ik in ignore_keys:
318
+ if k.startswith(ik):
319
+ print("Deleting key {} from state_dict.".format(k))
320
+ del sd[k]
321
+ self.load_state_dict(sd, strict=False)
322
+ print(f"Restored from {path}")
323
+
324
+ def encode(self, x):
325
+ h = self.encoder(x)
326
+ moments = self.quant_conv(h)
327
+ posterior = DiagonalGaussianDistribution(moments)
328
+ return posterior
329
+
330
+ def decode(self, z):
331
+ z = self.post_quant_conv(z)
332
+ dec = self.decoder(z)
333
+ return dec
334
+
335
+ def forward(self, input, sample_posterior=True):
336
+ posterior = self.encode(input)
337
+ if sample_posterior:
338
+ z = posterior.sample()
339
+ else:
340
+ z = posterior.mode()
341
+ dec = self.decode(z)
342
+ return dec, posterior
343
+
344
+ def get_input(self, batch, k):
345
+ x = batch[k]
346
+ if len(x.shape) == 3:
347
+ x = x[..., None]
348
+ x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float()
349
+ return x
350
+
351
+ def training_step(self, batch, batch_idx, optimizer_idx):
352
+ inputs = self.get_input(batch, self.image_key)
353
+ reconstructions, posterior = self(inputs)
354
+
355
+ if optimizer_idx == 0:
356
+ # train encoder+decoder+logvar
357
+ aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
358
+ last_layer=self.get_last_layer(), split="train")
359
+ self.log("aeloss", aeloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
360
+ self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=False)
361
+ return aeloss
362
+
363
+ if optimizer_idx == 1:
364
+ # train the discriminator
365
+ discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
366
+ last_layer=self.get_last_layer(), split="train")
367
+
368
+ self.log("discloss", discloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
369
+ self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=False)
370
+ return discloss
371
+
372
+ def validation_step(self, batch, batch_idx):
373
+ inputs = self.get_input(batch, self.image_key)
374
+ reconstructions, posterior = self(inputs)
375
+ aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, 0, self.global_step,
376
+ last_layer=self.get_last_layer(), split="val")
377
+
378
+ discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, 1, self.global_step,
379
+ last_layer=self.get_last_layer(), split="val")
380
+
381
+ self.log("val/rec_loss", log_dict_ae["val/rec_loss"])
382
+ self.log_dict(log_dict_ae)
383
+ self.log_dict(log_dict_disc)
384
+ return self.log_dict
385
+
386
+ def configure_optimizers(self):
387
+ lr = self.learning_rate
388
+ opt_ae = torch.optim.Adam(list(self.encoder.parameters())+
389
+ list(self.decoder.parameters())+
390
+ list(self.quant_conv.parameters())+
391
+ list(self.post_quant_conv.parameters()),
392
+ lr=lr, betas=(0.5, 0.9))
393
+ opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(),
394
+ lr=lr, betas=(0.5, 0.9))
395
+ return [opt_ae, opt_disc], []
396
+
397
+ def get_last_layer(self):
398
+ return self.decoder.conv_out.weight
399
+
400
+ @torch.no_grad()
401
+ def log_images(self, batch, only_inputs=False, **kwargs):
402
+ log = dict()
403
+ x = self.get_input(batch, self.image_key)
404
+ x = x.to(self.device)
405
+ if not only_inputs:
406
+ xrec, posterior = self(x)
407
+ if x.shape[1] > 3:
408
+ # colorize with random projection
409
+ assert xrec.shape[1] > 3
410
+ x = self.to_rgb(x)
411
+ xrec = self.to_rgb(xrec)
412
+ log["samples"] = self.decode(torch.randn_like(posterior.sample()))
413
+ log["reconstructions"] = xrec
414
+ log["inputs"] = x
415
+ return log
416
+
417
+ def to_rgb(self, x):
418
+ assert self.image_key == "segmentation"
419
+ if not hasattr(self, "colorize"):
420
+ self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
421
+ x = F.conv2d(x, weight=self.colorize)
422
+ x = 2.*(x-x.min())/(x.max()-x.min()) - 1.
423
+ return x
424
+
425
+
426
+ class IdentityFirstStage(torch.nn.Module):
427
+ def __init__(self, *args, vq_interface=False, **kwargs):
428
+ self.vq_interface = vq_interface # TODO: Should be true by default but check to not break older stuff
429
+ super().__init__()
430
+
431
+ def encode(self, x, *args, **kwargs):
432
+ return x
433
+
434
+ def decode(self, x, *args, **kwargs):
435
+ return x
436
+
437
+ def quantize(self, x, *args, **kwargs):
438
+ if self.vq_interface:
439
+ return x, None, [None, None, None]
440
+ return x
441
+
442
+ def forward(self, x, *args, **kwargs):
443
+ return x
ldm/models/diffusion/__init__.py ADDED
File without changes
ldm/models/diffusion/sync_dreamer.py ADDED
@@ -0,0 +1,661 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from pathlib import Path
2
+
3
+ import pytorch_lightning as pl
4
+ import torch
5
+ import torch.nn as nn
6
+ import torch.nn.functional as F
7
+ import numpy as np
8
+ from skimage.io import imsave
9
+ from torch.optim.lr_scheduler import LambdaLR
10
+ from tqdm import tqdm
11
+
12
+ from ldm.base_utils import read_pickle, concat_images_list
13
+ from ldm.models.diffusion.sync_dreamer_utils import get_warp_coordinates, create_target_volume
14
+ from ldm.models.diffusion.sync_dreamer_network import NoisyTargetViewEncoder, SpatialTime3DNet, FrustumTV3DNet
15
+ from ldm.modules.diffusionmodules.util import make_ddim_timesteps, timestep_embedding
16
+ from ldm.modules.encoders.modules import FrozenCLIPImageEmbedder
17
+ from ldm.util import instantiate_from_config
18
+
19
+ def disabled_train(self, mode=True):
20
+ """Overwrite model.train with this function to make sure train/eval mode
21
+ does not change anymore."""
22
+ return self
23
+
24
+ def disable_training_module(module: nn.Module):
25
+ module = module.eval()
26
+ module.train = disabled_train
27
+ for para in module.parameters():
28
+ para.requires_grad = False
29
+ return module
30
+
31
+ def repeat_to_batch(tensor, B, VN):
32
+ t_shape = tensor.shape
33
+ ones = [1 for _ in range(len(t_shape)-1)]
34
+ tensor_new = tensor.view(B,1,*t_shape[1:]).repeat(1,VN,*ones).view(B*VN,*t_shape[1:])
35
+ return tensor_new
36
+
37
+ class UNetWrapper(nn.Module):
38
+ def __init__(self, diff_model_config, drop_conditions=False, drop_scheme='default', use_zero_123=True):
39
+ super().__init__()
40
+ self.diffusion_model = instantiate_from_config(diff_model_config)
41
+ self.drop_conditions = drop_conditions
42
+ self.drop_scheme=drop_scheme
43
+ self.use_zero_123 = use_zero_123
44
+
45
+
46
+ def drop(self, cond, mask):
47
+ shape = cond.shape
48
+ B = shape[0]
49
+ cond = mask.view(B,*[1 for _ in range(len(shape)-1)]) * cond
50
+ return cond
51
+
52
+ def get_trainable_parameters(self):
53
+ return self.diffusion_model.get_trainable_parameters()
54
+
55
+ def get_drop_scheme(self, B, device):
56
+ if self.drop_scheme=='default':
57
+ random = torch.rand(B, dtype=torch.float32, device=device)
58
+ drop_clip = (random > 0.15) & (random <= 0.2)
59
+ drop_volume = (random > 0.1) & (random <= 0.15)
60
+ drop_concat = (random > 0.05) & (random <= 0.1)
61
+ drop_all = random <= 0.05
62
+ else:
63
+ raise NotImplementedError
64
+ return drop_clip, drop_volume, drop_concat, drop_all
65
+
66
+ def forward(self, x, t, clip_embed, volume_feats, x_concat, is_train=False):
67
+ """
68
+
69
+ @param x: B,4,H,W
70
+ @param t: B,
71
+ @param clip_embed: B,M,768
72
+ @param volume_feats: B,C,D,H,W
73
+ @param x_concat: B,C,H,W
74
+ @param is_train:
75
+ @return:
76
+ """
77
+ if self.drop_conditions and is_train:
78
+ B = x.shape[0]
79
+ drop_clip, drop_volume, drop_concat, drop_all = self.get_drop_scheme(B, x.device)
80
+
81
+ clip_mask = 1.0 - (drop_clip | drop_all).float()
82
+ clip_embed = self.drop(clip_embed, clip_mask)
83
+
84
+ volume_mask = 1.0 - (drop_volume | drop_all).float()
85
+ for k, v in volume_feats.items():
86
+ volume_feats[k] = self.drop(v, mask=volume_mask)
87
+
88
+ concat_mask = 1.0 - (drop_concat | drop_all).float()
89
+ x_concat = self.drop(x_concat, concat_mask)
90
+
91
+ if self.use_zero_123:
92
+ # zero123 does not multiply this when encoding, maybe a bug for zero123
93
+ first_stage_scale_factor = 0.18215
94
+ x_concat_ = x_concat * 1.0
95
+ x_concat_[:, :4] = x_concat_[:, :4] / first_stage_scale_factor
96
+ else:
97
+ x_concat_ = x_concat
98
+
99
+ x = torch.cat([x, x_concat_], 1)
100
+ pred = self.diffusion_model(x, t, clip_embed, source_dict=volume_feats)
101
+ return pred
102
+
103
+ def predict_with_unconditional_scale(self, x, t, clip_embed, volume_feats, x_concat, unconditional_scale):
104
+ x_ = torch.cat([x] * 2, 0)
105
+ t_ = torch.cat([t] * 2, 0)
106
+ clip_embed_ = torch.cat([clip_embed, torch.zeros_like(clip_embed)], 0)
107
+
108
+ v_ = {}
109
+ for k, v in volume_feats.items():
110
+ v_[k] = torch.cat([v, torch.zeros_like(v)], 0)
111
+
112
+ x_concat_ = torch.cat([x_concat, torch.zeros_like(x_concat)], 0)
113
+ if self.use_zero_123:
114
+ # zero123 does not multiply this when encoding, maybe a bug for zero123
115
+ first_stage_scale_factor = 0.18215
116
+ x_concat_[:, :4] = x_concat_[:, :4] / first_stage_scale_factor
117
+ x_ = torch.cat([x_, x_concat_], 1)
118
+ s, s_uc = self.diffusion_model(x_, t_, clip_embed_, source_dict=v_).chunk(2)
119
+ s = s_uc + unconditional_scale * (s - s_uc)
120
+ return s
121
+
122
+
123
+ class SpatialVolumeNet(nn.Module):
124
+ def __init__(self, time_dim, view_dim, view_num,
125
+ input_image_size=256, frustum_volume_depth=48,
126
+ spatial_volume_size=32, spatial_volume_length=0.5,
127
+ frustum_volume_length=0.86603 # sqrt(3)/2
128
+ ):
129
+ super().__init__()
130
+ self.target_encoder = NoisyTargetViewEncoder(time_dim, view_dim, output_dim=16)
131
+ self.spatial_volume_feats = SpatialTime3DNet(input_dim=16 * view_num, time_dim=time_dim, dims=(64, 128, 256, 512))
132
+ self.frustum_volume_feats = FrustumTV3DNet(64, time_dim, view_dim, dims=(64, 128, 256, 512))
133
+
134
+ self.frustum_volume_length = frustum_volume_length
135
+ self.input_image_size = input_image_size
136
+ self.spatial_volume_size = spatial_volume_size
137
+ self.spatial_volume_length = spatial_volume_length
138
+
139
+ self.frustum_volume_size = self.input_image_size // 8
140
+ self.frustum_volume_depth = frustum_volume_depth
141
+ self.time_dim = time_dim
142
+ self.view_dim = view_dim
143
+ self.default_origin_depth = 1.5 # our rendered images are 1.5 away from the origin, we assume camera is 1.5 away from the origin
144
+
145
+ def construct_spatial_volume(self, x, t_embed, v_embed, target_poses, target_Ks):
146
+ """
147
+ @param x: B,N,4,H,W
148
+ @param t_embed: B,t_dim
149
+ @param v_embed: B,N,v_dim
150
+ @param target_poses: N,3,4
151
+ @param target_Ks: N,3,3
152
+ @return:
153
+ """
154
+ B, N, _, H, W = x.shape
155
+ V = self.spatial_volume_size
156
+ device = x.device
157
+
158
+ spatial_volume_verts = torch.linspace(-self.spatial_volume_length, self.spatial_volume_length, V, dtype=torch.float32, device=device)
159
+ spatial_volume_verts = torch.stack(torch.meshgrid(spatial_volume_verts, spatial_volume_verts, spatial_volume_verts), -1)
160
+ spatial_volume_verts = spatial_volume_verts.reshape(1, V ** 3, 3)[:, :, (2, 1, 0)]
161
+ spatial_volume_verts = spatial_volume_verts.view(1, V, V, V, 3).permute(0, 4, 1, 2, 3).repeat(B, 1, 1, 1, 1)
162
+
163
+ # encode source features
164
+ t_embed_ = t_embed.view(B, 1, self.time_dim).repeat(1, N, 1).view(B, N, self.time_dim)
165
+ # v_embed_ = v_embed.view(1, N, self.view_dim).repeat(B, 1, 1).view(B, N, self.view_dim)
166
+ v_embed_ = v_embed
167
+ target_Ks = target_Ks.unsqueeze(0).repeat(B, 1, 1, 1)
168
+ target_poses = target_poses.unsqueeze(0).repeat(B, 1, 1, 1)
169
+
170
+ # extract 2D image features
171
+ spatial_volume_feats = []
172
+ # project source features
173
+ for ni in range(0, N):
174
+ pose_source_ = target_poses[:, ni]
175
+ K_source_ = target_Ks[:, ni]
176
+ x_ = self.target_encoder(x[:, ni], t_embed_[:, ni], v_embed_[:, ni])
177
+ C = x_.shape[1]
178
+
179
+ coords_source = get_warp_coordinates(spatial_volume_verts, x_.shape[-1], self.input_image_size, K_source_, pose_source_).view(B, V, V * V, 2)
180
+ unproj_feats_ = F.grid_sample(x_, coords_source, mode='bilinear', padding_mode='zeros', align_corners=True)
181
+ unproj_feats_ = unproj_feats_.view(B, C, V, V, V)
182
+ spatial_volume_feats.append(unproj_feats_)
183
+
184
+ spatial_volume_feats = torch.stack(spatial_volume_feats, 1) # B,N,C,V,V,V
185
+ N = spatial_volume_feats.shape[1]
186
+ spatial_volume_feats = spatial_volume_feats.view(B, N*C, V, V, V)
187
+
188
+ spatial_volume_feats = self.spatial_volume_feats(spatial_volume_feats, t_embed) # b,64,32,32,32
189
+ return spatial_volume_feats
190
+
191
+ def construct_view_frustum_volume(self, spatial_volume, t_embed, v_embed, poses, Ks, target_indices):
192
+ """
193
+ @param spatial_volume: B,C,V,V,V
194
+ @param t_embed: B,t_dim
195
+ @param v_embed: B,N,v_dim
196
+ @param poses: N,3,4
197
+ @param Ks: N,3,3
198
+ @param target_indices: B,TN
199
+ @return: B*TN,C,H,W
200
+ """
201
+ B, TN = target_indices.shape
202
+ H, W = self.frustum_volume_size, self.frustum_volume_size
203
+ D = self.frustum_volume_depth
204
+ V = self.spatial_volume_size
205
+
206
+ near = torch.ones(B * TN, 1, H, W, dtype=spatial_volume.dtype, device=spatial_volume.device) * self.default_origin_depth - self.frustum_volume_length
207
+ far = torch.ones(B * TN, 1, H, W, dtype=spatial_volume.dtype, device=spatial_volume.device) * self.default_origin_depth + self.frustum_volume_length
208
+
209
+ target_indices = target_indices.view(B*TN) # B*TN
210
+ poses_ = poses[target_indices] # B*TN,3,4
211
+ Ks_ = Ks[target_indices] # B*TN,3,4
212
+ volume_xyz, volume_depth = create_target_volume(D, self.frustum_volume_size, self.input_image_size, poses_, Ks_, near, far) # B*TN,3 or 1,D,H,W
213
+
214
+ volume_xyz_ = volume_xyz / self.spatial_volume_length # since the spatial volume is constructed in [-spatial_volume_length,spatial_volume_length]
215
+ volume_xyz_ = volume_xyz_.permute(0, 2, 3, 4, 1) # B*TN,D,H,W,3
216
+ spatial_volume_ = spatial_volume.unsqueeze(1).repeat(1, TN, 1, 1, 1, 1).view(B * TN, -1, V, V, V)
217
+ volume_feats = F.grid_sample(spatial_volume_, volume_xyz_, mode='bilinear', padding_mode='zeros', align_corners=True) # B*TN,C,D,H,W
218
+
219
+ v_embed_ = v_embed[torch.arange(B)[:,None], target_indices.view(B,TN)].view(B*TN, -1) # B*TN
220
+ t_embed_ = t_embed.unsqueeze(1).repeat(1,TN,1).view(B*TN,-1)
221
+ volume_feats_dict = self.frustum_volume_feats(volume_feats, t_embed_, v_embed_)
222
+ return volume_feats_dict, volume_depth
223
+
224
+ class SyncMultiviewDiffusion(pl.LightningModule):
225
+ def __init__(self, unet_config, scheduler_config,
226
+ finetune_unet=False, finetune_projection=True,
227
+ view_num=16, image_size=256,
228
+ cfg_scale=3.0, output_num=8, batch_view_num=4,
229
+ drop_conditions=False, drop_scheme='default',
230
+ clip_image_encoder_path="/apdcephfs/private_rondyliu/projects/clip/ViT-L-14.pt"):
231
+ super().__init__()
232
+
233
+ self.finetune_unet = finetune_unet
234
+ self.finetune_projection = finetune_projection
235
+
236
+ self.view_num = view_num
237
+ self.viewpoint_dim = 4
238
+ self.output_num = output_num
239
+ self.image_size = image_size
240
+
241
+ self.batch_view_num = batch_view_num
242
+ self.cfg_scale = cfg_scale
243
+
244
+ self.clip_image_encoder_path = clip_image_encoder_path
245
+
246
+ self._init_time_step_embedding()
247
+ self._init_first_stage()
248
+ self._init_schedule()
249
+ self._init_multiview()
250
+ self._init_clip_image_encoder()
251
+ self._init_clip_projection()
252
+
253
+ self.spatial_volume = SpatialVolumeNet(self.time_embed_dim, self.viewpoint_dim, self.view_num)
254
+ self.model = UNetWrapper(unet_config, drop_conditions=drop_conditions, drop_scheme=drop_scheme)
255
+ self.scheduler_config = scheduler_config
256
+
257
+ latent_size = image_size//8
258
+ self.ddim = SyncDDIMSampler(self, 200, "uniform", 1.0, latent_size=latent_size)
259
+
260
+ def _init_clip_projection(self):
261
+ self.cc_projection = nn.Linear(772, 768)
262
+ nn.init.eye_(list(self.cc_projection.parameters())[0][:768, :768])
263
+ nn.init.zeros_(list(self.cc_projection.parameters())[1])
264
+ self.cc_projection.requires_grad_(True)
265
+
266
+ if not self.finetune_projection:
267
+ disable_training_module(self.cc_projection)
268
+
269
+ def _init_multiview(self):
270
+ K, azs, _, _, poses = read_pickle(f'meta_info/camera-{self.view_num}.pkl')
271
+ default_image_size = 256
272
+ ratio = self.image_size/default_image_size
273
+ K = np.diag([ratio,ratio,1]) @ K
274
+ K = torch.from_numpy(K.astype(np.float32)) # [3,3]
275
+ K = K.unsqueeze(0).repeat(self.view_num,1,1) # N,3,3
276
+ poses = torch.from_numpy(poses.astype(np.float32)) # N,3,4
277
+ self.register_buffer('poses', poses)
278
+ self.register_buffer('Ks', K)
279
+ azs = (azs + np.pi) % (np.pi * 2) - np.pi # scale to [-pi,pi] and the index=0 has az=0
280
+ self.register_buffer('azimuth', torch.from_numpy(azs.astype(np.float32)))
281
+
282
+ def get_viewpoint_embedding(self, batch_size, elevation_ref):
283
+ """
284
+ @param batch_size:
285
+ @param elevation_ref: B
286
+ @return:
287
+ """
288
+ azimuth_input = self.azimuth[0].unsqueeze(0) # 1
289
+ azimuth_target = self.azimuth # N
290
+ elevation_input = -elevation_ref # note that zero123 use a negative elevation here!!!
291
+ elevation_target = -np.deg2rad(30)
292
+ d_e = elevation_target - elevation_input # B
293
+ N = self.azimuth.shape[0]
294
+ B = batch_size
295
+ d_e = d_e.unsqueeze(1).repeat(1, N)
296
+ d_a = azimuth_target - azimuth_input # N
297
+ d_a = d_a.unsqueeze(0).repeat(B, 1)
298
+ d_z = torch.zeros_like(d_a)
299
+ embedding = torch.stack([d_e, torch.sin(d_a), torch.cos(d_a), d_z], -1) # B,N,4
300
+ return embedding
301
+
302
+ def _init_first_stage(self):
303
+ first_stage_config={
304
+ "target": "ldm.models.autoencoder.AutoencoderKL",
305
+ "params": {
306
+ "embed_dim": 4,
307
+ "monitor": "val/rec_loss",
308
+ "ddconfig":{
309
+ "double_z": True,
310
+ "z_channels": 4,
311
+ "resolution": self.image_size,
312
+ "in_channels": 3,
313
+ "out_ch": 3,
314
+ "ch": 128,
315
+ "ch_mult": [1,2,4,4],
316
+ "num_res_blocks": 2,
317
+ "attn_resolutions": [],
318
+ "dropout": 0.0
319
+ },
320
+ "lossconfig": {"target": "torch.nn.Identity"},
321
+ }
322
+ }
323
+ self.first_stage_scale_factor = 0.18215
324
+ self.first_stage_model = instantiate_from_config(first_stage_config)
325
+ self.first_stage_model = disable_training_module(self.first_stage_model)
326
+
327
+ def _init_clip_image_encoder(self):
328
+ self.clip_image_encoder = FrozenCLIPImageEmbedder(model=self.clip_image_encoder_path)
329
+ self.clip_image_encoder = disable_training_module(self.clip_image_encoder)
330
+
331
+ def _init_schedule(self):
332
+ self.num_timesteps = 1000
333
+ linear_start = 0.00085
334
+ linear_end = 0.0120
335
+ num_timesteps = 1000
336
+ betas = torch.linspace(linear_start ** 0.5, linear_end ** 0.5, num_timesteps, dtype=torch.float32) ** 2 # T
337
+ assert betas.shape[0] == self.num_timesteps
338
+
339
+ # all in float64 first
340
+ alphas = 1. - betas
341
+ alphas_cumprod = torch.cumprod(alphas, dim=0) # T
342
+ alphas_cumprod_prev = torch.cat([torch.ones(1, dtype=torch.float64), alphas_cumprod[:-1]], 0)
343
+ posterior_variance = betas * (1. - alphas_cumprod_prev) / (1. - alphas_cumprod) # T
344
+ posterior_log_variance_clipped = torch.log(torch.clamp(posterior_variance, min=1e-20))
345
+ posterior_log_variance_clipped = torch.clamp(posterior_log_variance_clipped, min=-10)
346
+
347
+ self.register_buffer("betas", betas.float())
348
+ self.register_buffer("alphas", alphas.float())
349
+ self.register_buffer("alphas_cumprod", alphas_cumprod.float())
350
+ self.register_buffer("sqrt_alphas_cumprod", torch.sqrt(alphas_cumprod).float())
351
+ self.register_buffer("sqrt_one_minus_alphas_cumprod", torch.sqrt(1 - alphas_cumprod).float())
352
+ self.register_buffer("posterior_variance", posterior_variance.float())
353
+ self.register_buffer('posterior_log_variance_clipped', posterior_log_variance_clipped.float())
354
+
355
+ def _init_time_step_embedding(self):
356
+ self.time_embed_dim = 256
357
+ self.time_embed = nn.Sequential(
358
+ nn.Linear(self.time_embed_dim, self.time_embed_dim),
359
+ nn.SiLU(True),
360
+ nn.Linear(self.time_embed_dim, self.time_embed_dim),
361
+ )
362
+
363
+ def encode_first_stage(self, x, sample=True):
364
+ with torch.no_grad():
365
+ posterior = self.first_stage_model.encode(x) # b,4,h//8,w//8
366
+ if sample:
367
+ return posterior.sample().detach() * self.first_stage_scale_factor
368
+ else:
369
+ return posterior.mode().detach() * self.first_stage_scale_factor
370
+
371
+ def decode_first_stage(self, z):
372
+ with torch.no_grad():
373
+ z = 1. / self.first_stage_scale_factor * z
374
+ return self.first_stage_model.decode(z)
375
+
376
+ def prepare(self, batch):
377
+ # encode target
378
+ if 'target_image' in batch:
379
+ image_target = batch['target_image'].permute(0, 1, 4, 2, 3) # b,n,3,h,w
380
+ N = image_target.shape[1]
381
+ x = [self.encode_first_stage(image_target[:,ni], True) for ni in range(N)]
382
+ x = torch.stack(x, 1) # b,n,4,h//8,w//8
383
+ else:
384
+ x = None
385
+
386
+ image_input = batch['input_image'].permute(0, 3, 1, 2)
387
+ elevation_input = batch['input_elevation'][:, 0] # b
388
+ x_input = self.encode_first_stage(image_input)
389
+ input_info = {'image': image_input, 'elevation': elevation_input, 'x': x_input}
390
+ with torch.no_grad():
391
+ clip_embed = self.clip_image_encoder.encode(image_input)
392
+ return x, clip_embed, input_info
393
+
394
+ def embed_time(self, t):
395
+ t_embed = timestep_embedding(t, self.time_embed_dim, repeat_only=False) # B,TED
396
+ t_embed = self.time_embed(t_embed) # B,TED
397
+ return t_embed
398
+
399
+ def get_target_view_feats(self, x_input, spatial_volume, clip_embed, t_embed, v_embed, target_index):
400
+ """
401
+ @param x_input: B,4,H,W
402
+ @param spatial_volume: B,C,V,V,V
403
+ @param clip_embed: B,1,768
404
+ @param t_embed: B,t_dim
405
+ @param v_embed: B,N,v_dim
406
+ @param target_index: B,TN
407
+ @return:
408
+ tensors of size B*TN,*
409
+ """
410
+ B, _, H, W = x_input.shape
411
+ frustum_volume_feats, frustum_volume_depth = self.spatial_volume.construct_view_frustum_volume(spatial_volume, t_embed, v_embed, self.poses, self.Ks, target_index)
412
+
413
+ # clip
414
+ TN = target_index.shape[1]
415
+ v_embed_ = v_embed[torch.arange(B)[:,None], target_index].view(B*TN, self.viewpoint_dim) # B*TN,v_dim
416
+ clip_embed_ = clip_embed.unsqueeze(1).repeat(1,TN,1,1).view(B*TN,1,768)
417
+ clip_embed_ = self.cc_projection(torch.cat([clip_embed_, v_embed_.unsqueeze(1)], -1)) # B*TN,1,768
418
+
419
+ x_input_ = x_input.unsqueeze(1).repeat(1, TN, 1, 1, 1).view(B * TN, 4, H, W)
420
+
421
+ x_concat = x_input_
422
+ return clip_embed_, frustum_volume_feats, x_concat
423
+
424
+ def training_step(self, batch):
425
+ B = batch['target_image'].shape[0]
426
+ time_steps = torch.randint(0, self.num_timesteps, (B,), device=self.device).long()
427
+
428
+ x, clip_embed, input_info = self.prepare(batch)
429
+ x_noisy, noise = self.add_noise(x, time_steps) # B,N,4,H,W
430
+
431
+ N = self.view_num
432
+ target_index = torch.randint(0, N, (B, 1), device=self.device).long() # B, 1
433
+ v_embed = self.get_viewpoint_embedding(B, input_info['elevation']) # N,v_dim
434
+
435
+ t_embed = self.embed_time(time_steps)
436
+ spatial_volume = self.spatial_volume.construct_spatial_volume(x_noisy, t_embed, v_embed, self.poses, self.Ks)
437
+
438
+ clip_embed, volume_feats, x_concat = self.get_target_view_feats(input_info['x'], spatial_volume, clip_embed, t_embed, v_embed, target_index)
439
+
440
+ x_noisy_ = x_noisy[torch.arange(B)[:,None],target_index][:,0] # B,4,H,W
441
+ noise_predict = self.model(x_noisy_, time_steps, clip_embed, volume_feats, x_concat, is_train=True) # B,4,H,W
442
+
443
+ noise_target = noise[torch.arange(B)[:,None],target_index][:,0] # B,4,H,W
444
+ # loss simple for diffusion
445
+ loss_simple = torch.nn.functional.mse_loss(noise_target, noise_predict, reduction='none')
446
+ loss = loss_simple.mean()
447
+ self.log('sim', loss_simple.mean(), prog_bar=True, logger=True, on_step=True, on_epoch=True, rank_zero_only=True)
448
+
449
+ # log others
450
+ lr = self.optimizers().param_groups[0]['lr']
451
+ self.log('lr', lr, prog_bar=True, logger=True, on_step=True, on_epoch=False, rank_zero_only=True)
452
+ self.log("step", self.global_step, prog_bar=True, logger=True, on_step=True, on_epoch=False, rank_zero_only=True)
453
+ return loss
454
+
455
+ def add_noise(self, x_start, t):
456
+ """
457
+ @param x_start: B,*
458
+ @param t: B,
459
+ @return:
460
+ """
461
+ B = x_start.shape[0]
462
+ noise = torch.randn_like(x_start) # B,*
463
+
464
+ sqrt_alphas_cumprod_ = self.sqrt_alphas_cumprod[t] # B,
465
+ sqrt_one_minus_alphas_cumprod_ = self.sqrt_one_minus_alphas_cumprod[t] # B
466
+ sqrt_alphas_cumprod_ = sqrt_alphas_cumprod_.view(B, *[1 for _ in range(len(x_start.shape)-1)])
467
+ sqrt_one_minus_alphas_cumprod_ = sqrt_one_minus_alphas_cumprod_.view(B, *[1 for _ in range(len(x_start.shape)-1)])
468
+ x_noisy = sqrt_alphas_cumprod_ * x_start + sqrt_one_minus_alphas_cumprod_ * noise
469
+ return x_noisy, noise
470
+
471
+ def sample(self, sampler, batch, cfg_scale, batch_view_num, return_inter_results=False, inter_interval=50, inter_view_interval=2):
472
+ _, clip_embed, input_info = self.prepare(batch)
473
+ x_sample, inter = sampler.sample(input_info, clip_embed, unconditional_scale=cfg_scale, log_every_t=inter_interval, batch_view_num=batch_view_num)
474
+
475
+ N = x_sample.shape[1]
476
+ x_sample = torch.stack([self.decode_first_stage(x_sample[:, ni]) for ni in range(N)], 1)
477
+ if return_inter_results:
478
+ torch.cuda.synchronize()
479
+ torch.cuda.empty_cache()
480
+ inter = torch.stack(inter['x_inter'], 2) # # B,N,T,C,H,W
481
+ B,N,T,C,H,W = inter.shape
482
+ inter_results = []
483
+ for ni in tqdm(range(0, N, inter_view_interval)):
484
+ inter_results_ = []
485
+ for ti in range(T):
486
+ inter_results_.append(self.decode_first_stage(inter[:, ni, ti]))
487
+ inter_results.append(torch.stack(inter_results_, 1)) # B,T,3,H,W
488
+ inter_results = torch.stack(inter_results,1) # B,N,T,3,H,W
489
+ return x_sample, inter_results
490
+ else:
491
+ return x_sample
492
+
493
+ def log_image(self, x_sample, batch, step, output_dir):
494
+ process = lambda x: ((torch.clip(x, min=-1, max=1).cpu().numpy() * 0.5 + 0.5) * 255).astype(np.uint8)
495
+ B = x_sample.shape[0]
496
+ N = x_sample.shape[1]
497
+ image_cond = []
498
+ for bi in range(B):
499
+ img_pr_ = concat_images_list(process(batch['input_image'][bi]),*[process(x_sample[bi, ni].permute(1, 2, 0)) for ni in range(N)])
500
+ image_cond.append(img_pr_)
501
+
502
+ output_dir = Path(output_dir)
503
+ imsave(str(output_dir/f'{step}.jpg'), concat_images_list(*image_cond, vert=True))
504
+
505
+ @torch.no_grad()
506
+ def validation_step(self, batch, batch_idx):
507
+ if batch_idx==0 and self.global_rank==0:
508
+ self.eval()
509
+ step = self.global_step
510
+ batch_ = {}
511
+ for k, v in batch.items(): batch_[k] = v[:self.output_num]
512
+ x_sample = self.sample(batch_, self.cfg_scale, self.batch_view_num)
513
+ output_dir = Path(self.image_dir) / 'images' / 'val'
514
+ output_dir.mkdir(exist_ok=True, parents=True)
515
+ self.log_image(x_sample, batch, step, output_dir=output_dir)
516
+
517
+ def configure_optimizers(self):
518
+ lr = self.learning_rate
519
+ print(f'setting learning rate to {lr:.4f} ...')
520
+ paras = []
521
+ if self.finetune_projection:
522
+ paras.append({"params": self.cc_projection.parameters(), "lr": lr},)
523
+ if self.finetune_unet:
524
+ paras.append({"params": self.model.parameters(), "lr": lr},)
525
+ else:
526
+ paras.append({"params": self.model.get_trainable_parameters(), "lr": lr},)
527
+
528
+ paras.append({"params": self.time_embed.parameters(), "lr": lr*10.0},)
529
+ paras.append({"params": self.spatial_volume.parameters(), "lr": lr*10.0},)
530
+
531
+ opt = torch.optim.AdamW(paras, lr=lr)
532
+
533
+ scheduler = instantiate_from_config(self.scheduler_config)
534
+ print("Setting up LambdaLR scheduler...")
535
+ scheduler = [{'scheduler': LambdaLR(opt, lr_lambda=scheduler.schedule), 'interval': 'step', 'frequency': 1}]
536
+ return [opt], scheduler
537
+
538
+ class SyncDDIMSampler:
539
+ def __init__(self, model: SyncMultiviewDiffusion, ddim_num_steps, ddim_discretize="uniform", ddim_eta=1.0, latent_size=32):
540
+ super().__init__()
541
+ self.model = model
542
+ self.ddpm_num_timesteps = model.num_timesteps
543
+ self.latent_size = latent_size
544
+ self._make_schedule(ddim_num_steps, ddim_discretize, ddim_eta)
545
+ self.eta = ddim_eta
546
+
547
+ def _make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
548
+ self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps, num_ddpm_timesteps=self.ddpm_num_timesteps, verbose=verbose) # DT
549
+ ddim_timesteps_ = torch.from_numpy(self.ddim_timesteps.astype(np.int64)) # DT
550
+
551
+ alphas_cumprod = self.model.alphas_cumprod # T
552
+ assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
553
+ self.ddim_alphas = alphas_cumprod[ddim_timesteps_].double() # DT
554
+ self.ddim_alphas_prev = torch.cat([alphas_cumprod[0:1], alphas_cumprod[ddim_timesteps_[:-1]]], 0) # DT
555
+ self.ddim_sigmas = ddim_eta * torch.sqrt((1 - self.ddim_alphas_prev) / (1 - self.ddim_alphas) * (1 - self.ddim_alphas / self.ddim_alphas_prev))
556
+
557
+ self.ddim_alphas_raw = self.model.alphas[ddim_timesteps_].float() # DT
558
+ self.ddim_sigmas = self.ddim_sigmas.float()
559
+ self.ddim_alphas = self.ddim_alphas.float()
560
+ self.ddim_alphas_prev = self.ddim_alphas_prev.float()
561
+ self.ddim_sqrt_one_minus_alphas = torch.sqrt(1. - self.ddim_alphas).float()
562
+
563
+
564
+ @torch.no_grad()
565
+ def denoise_apply_impl(self, x_target_noisy, index, noise_pred, is_step0=False):
566
+ """
567
+ @param x_target_noisy: B,N,4,H,W
568
+ @param index: index
569
+ @param noise_pred: B,N,4,H,W
570
+ @param is_step0: bool
571
+ @return:
572
+ """
573
+ device = x_target_noisy.device
574
+ B,N,_,H,W = x_target_noisy.shape
575
+
576
+ # apply noise
577
+ a_t = self.ddim_alphas[index].to(device).float().view(1,1,1,1,1)
578
+ a_prev = self.ddim_alphas_prev[index].to(device).float().view(1,1,1,1,1)
579
+ sqrt_one_minus_at = self.ddim_sqrt_one_minus_alphas[index].to(device).float().view(1,1,1,1,1)
580
+ sigma_t = self.ddim_sigmas[index].to(device).float().view(1,1,1,1,1)
581
+
582
+ pred_x0 = (x_target_noisy - sqrt_one_minus_at * noise_pred) / a_t.sqrt()
583
+ dir_xt = torch.clamp(1. - a_prev - sigma_t**2, min=1e-7).sqrt() * noise_pred
584
+ x_prev = a_prev.sqrt() * pred_x0 + dir_xt
585
+ if not is_step0:
586
+ noise = sigma_t * torch.randn_like(x_target_noisy)
587
+ x_prev = x_prev + noise
588
+ return x_prev
589
+
590
+ @torch.no_grad()
591
+ def denoise_apply(self, x_target_noisy, input_info, clip_embed, time_steps, index, unconditional_scale, batch_view_num=1, is_step0=False):
592
+ """
593
+ @param x_target_noisy: B,N,4,H,W
594
+ @param input_info:
595
+ @param clip_embed: B,M,768
596
+ @param time_steps: B,
597
+ @param index: int
598
+ @param unconditional_scale:
599
+ @param batch_view_num: int
600
+ @param is_step0: bool
601
+ @return:
602
+ """
603
+ x_input, elevation_input = input_info['x'], input_info['elevation']
604
+ B, N, C, H, W = x_target_noisy.shape
605
+
606
+ # construct source data
607
+ v_embed = self.model.get_viewpoint_embedding(B, elevation_input) # B,N,v_dim
608
+ t_embed = self.model.embed_time(time_steps) # B,t_dim
609
+ spatial_volume = self.model.spatial_volume.construct_spatial_volume(x_target_noisy, t_embed, v_embed, self.model.poses, self.model.Ks)
610
+
611
+ e_t = []
612
+ target_indices = torch.arange(N) # N
613
+ for ni in range(0, N, batch_view_num):
614
+ x_target_noisy_ = x_target_noisy[:, ni:ni + batch_view_num]
615
+ VN = x_target_noisy_.shape[1]
616
+ x_target_noisy_ = x_target_noisy_.reshape(B*VN,C,H,W)
617
+
618
+ time_steps_ = repeat_to_batch(time_steps, B, VN)
619
+ target_indices_ = target_indices[ni:ni+batch_view_num].unsqueeze(0).repeat(B,1)
620
+ clip_embed_, volume_feats_, x_concat_ = self.model.get_target_view_feats(x_input, spatial_volume, clip_embed, t_embed, v_embed, target_indices_)
621
+ if unconditional_scale!=1.0:
622
+ noise = self.model.model.predict_with_unconditional_scale(x_target_noisy_, time_steps_, clip_embed_, volume_feats_, x_concat_, unconditional_scale)
623
+ else:
624
+ noise = self.model.model(x_target_noisy_, time_steps_, clip_embed_, volume_feats_, x_concat_, is_train=False)
625
+ e_t.append(noise.view(B,VN,4,H,W))
626
+
627
+ e_t = torch.cat(e_t, 1)
628
+ x_prev = self.denoise_apply_impl(x_target_noisy, index, e_t, is_step0)
629
+ return x_prev
630
+
631
+ @torch.no_grad()
632
+ def sample(self, input_info, clip_embed, unconditional_scale=1.0, log_every_t=50, batch_view_num=1):
633
+ """
634
+ @param input_info: x, elevation
635
+ @param clip_embed: B,M,768
636
+ @param unconditional_scale:
637
+ @param log_every_t:
638
+ @param batch_view_num:
639
+ @return:
640
+ """
641
+ print(f"unconditional scale {unconditional_scale:.1f}")
642
+ C, H, W = 4, self.latent_size, self.latent_size
643
+ B = clip_embed.shape[0]
644
+ N = self.model.view_num
645
+ device = self.model.device
646
+ x_target_noisy = torch.randn([B, N, C, H, W], device=device)
647
+
648
+ timesteps = self.ddim_timesteps
649
+ intermediates = {'x_inter': []}
650
+ time_range = np.flip(timesteps)
651
+ total_steps = timesteps.shape[0]
652
+
653
+ iterator = tqdm(time_range, desc='DDIM Sampler', total=total_steps)
654
+ for i, step in enumerate(iterator):
655
+ index = total_steps - i - 1 # index in ddim state
656
+ time_steps = torch.full((B,), step, device=device, dtype=torch.long)
657
+ x_target_noisy = self.denoise_apply(x_target_noisy, input_info, clip_embed, time_steps, index, unconditional_scale, batch_view_num=batch_view_num, is_step0=index==0)
658
+ if index % log_every_t == 0 or index == total_steps - 1:
659
+ intermediates['x_inter'].append(x_target_noisy)
660
+
661
+ return x_target_noisy, intermediates
ldm/models/diffusion/sync_dreamer_attention.py ADDED
@@ -0,0 +1,142 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+
4
+ from ldm.modules.attention import default, zero_module, checkpoint
5
+ from ldm.modules.diffusionmodules.openaimodel import UNetModel
6
+ from ldm.modules.diffusionmodules.util import timestep_embedding
7
+
8
+ class DepthAttention(nn.Module):
9
+ def __init__(self, query_dim, context_dim, heads, dim_head, output_bias=True):
10
+ super().__init__()
11
+ inner_dim = dim_head * heads
12
+ context_dim = default(context_dim, query_dim)
13
+
14
+ self.scale = dim_head ** -0.5
15
+ self.heads = heads
16
+ self.dim_head = dim_head
17
+
18
+ self.to_q = nn.Conv2d(query_dim, inner_dim, 1, 1, bias=False)
19
+ self.to_k = nn.Conv3d(context_dim, inner_dim, 1, 1, bias=False)
20
+ self.to_v = nn.Conv3d(context_dim, inner_dim, 1, 1, bias=False)
21
+ if output_bias:
22
+ self.to_out = nn.Conv2d(inner_dim, query_dim, 1, 1)
23
+ else:
24
+ self.to_out = nn.Conv2d(inner_dim, query_dim, 1, 1, bias=False)
25
+
26
+ def forward(self, x, context):
27
+ """
28
+
29
+ @param x: b,f0,h,w
30
+ @param context: b,f1,d,h,w
31
+ @return:
32
+ """
33
+ hn, hd = self.heads, self.dim_head
34
+ b, _, h, w = x.shape
35
+ b, _, d, h, w = context.shape
36
+
37
+ q = self.to_q(x).reshape(b,hn,hd,h,w) # b,t,h,w
38
+ k = self.to_k(context).reshape(b,hn,hd,d,h,w) # b,t,d,h,w
39
+ v = self.to_v(context).reshape(b,hn,hd,d,h,w) # b,t,d,h,w
40
+
41
+ sim = torch.sum(q.unsqueeze(3) * k, 2) * self.scale # b,hn,d,h,w
42
+ attn = sim.softmax(dim=2)
43
+
44
+ # b,hn,hd,d,h,w * b,hn,1,d,h,w
45
+ out = torch.sum(v * attn.unsqueeze(2), 3) # b,hn,hd,h,w
46
+ out = out.reshape(b,hn*hd,h,w)
47
+ return self.to_out(out)
48
+
49
+
50
+ class DepthTransformer(nn.Module):
51
+ def __init__(self, dim, n_heads, d_head, context_dim=None, checkpoint=True):
52
+ super().__init__()
53
+ inner_dim = n_heads * d_head
54
+ self.proj_in = nn.Sequential(
55
+ nn.Conv2d(dim, inner_dim, 1, 1),
56
+ nn.GroupNorm(8, inner_dim),
57
+ nn.SiLU(True),
58
+ )
59
+ self.proj_context = nn.Sequential(
60
+ nn.Conv3d(context_dim, context_dim, 1, 1, bias=False), # no bias
61
+ nn.GroupNorm(8, context_dim),
62
+ nn.ReLU(True), # only relu, because we want input is 0, output is 0
63
+ )
64
+ self.depth_attn = DepthAttention(query_dim=inner_dim, heads=n_heads, dim_head=d_head, context_dim=context_dim, output_bias=False) # is a self-attention if not self.disable_self_attn
65
+ self.proj_out = nn.Sequential(
66
+ nn.GroupNorm(8, inner_dim),
67
+ nn.ReLU(True),
68
+ nn.Conv2d(inner_dim, inner_dim, 3, 1, 1, bias=False),
69
+ nn.GroupNorm(8, inner_dim),
70
+ nn.ReLU(True),
71
+ zero_module(nn.Conv2d(inner_dim, dim, 3, 1, 1, bias=False)),
72
+ )
73
+ self.checkpoint = checkpoint
74
+
75
+ def forward(self, x, context=None):
76
+ return checkpoint(self._forward, (x, context), self.parameters(), self.checkpoint)
77
+
78
+ def _forward(self, x, context):
79
+ x_in = x
80
+ x = self.proj_in(x)
81
+ context = self.proj_context(context)
82
+ x = self.depth_attn(x, context)
83
+ x = self.proj_out(x) + x_in
84
+ return x
85
+
86
+
87
+ class DepthWiseAttention(UNetModel):
88
+ def __init__(self, volume_dims=(5,16,32,64), *args, **kwargs):
89
+ super().__init__(*args, **kwargs)
90
+ # num_heads = 4
91
+ model_channels = kwargs['model_channels']
92
+ channel_mult = kwargs['channel_mult']
93
+ d0,d1,d2,d3 = volume_dims
94
+
95
+ # 4
96
+ ch = model_channels*channel_mult[2]
97
+ self.middle_conditions = DepthTransformer(ch, 4, d3 // 2, context_dim=d3)
98
+
99
+ self.output_conditions=nn.ModuleList()
100
+ self.output_b2c = {3:0,4:1,5:2,6:3,7:4,8:5,9:6,10:7,11:8}
101
+ # 8
102
+ ch = model_channels*channel_mult[2]
103
+ self.output_conditions.append(DepthTransformer(ch, 4, d2 // 2, context_dim=d2)) # 0
104
+ self.output_conditions.append(DepthTransformer(ch, 4, d2 // 2, context_dim=d2)) # 1
105
+ # 16
106
+ self.output_conditions.append(DepthTransformer(ch, 4, d1 // 2, context_dim=d1)) # 2
107
+ ch = model_channels*channel_mult[1]
108
+ self.output_conditions.append(DepthTransformer(ch, 4, d1 // 2, context_dim=d1)) # 3
109
+ self.output_conditions.append(DepthTransformer(ch, 4, d1 // 2, context_dim=d1)) # 4
110
+ # 32
111
+ self.output_conditions.append(DepthTransformer(ch, 4, d0 // 2, context_dim=d0)) # 5
112
+ ch = model_channels*channel_mult[0]
113
+ self.output_conditions.append(DepthTransformer(ch, 4, d0 // 2, context_dim=d0)) # 6
114
+ self.output_conditions.append(DepthTransformer(ch, 4, d0 // 2, context_dim=d0)) # 7
115
+ self.output_conditions.append(DepthTransformer(ch, 4, d0 // 2, context_dim=d0)) # 8
116
+
117
+ def forward(self, x, timesteps=None, context=None, source_dict=None, **kwargs):
118
+ hs = []
119
+ t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
120
+ emb = self.time_embed(t_emb)
121
+
122
+ h = x.type(self.dtype)
123
+ for index, module in enumerate(self.input_blocks):
124
+ h = module(h, emb, context)
125
+ hs.append(h)
126
+
127
+ h = self.middle_block(h, emb, context)
128
+ h = self.middle_conditions(h, context=source_dict[h.shape[-1]])
129
+
130
+ for index, module in enumerate(self.output_blocks):
131
+ h = torch.cat([h, hs.pop()], dim=1)
132
+ h = module(h, emb, context)
133
+ if index in self.output_b2c:
134
+ layer = self.output_conditions[self.output_b2c[index]]
135
+ h = layer(h, context=source_dict[h.shape[-1]])
136
+
137
+ h = h.type(x.dtype)
138
+ return self.out(h)
139
+
140
+ def get_trainable_parameters(self):
141
+ paras = [para for para in self.middle_conditions.parameters()] + [para for para in self.output_conditions.parameters()]
142
+ return paras
ldm/models/diffusion/sync_dreamer_network.py ADDED
@@ -0,0 +1,186 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+
4
+ class Image2DResBlockWithTV(nn.Module):
5
+ def __init__(self, dim, tdim, vdim):
6
+ super().__init__()
7
+ norm = lambda c: nn.GroupNorm(8, c)
8
+ self.time_embed = nn.Conv2d(tdim, dim, 1, 1)
9
+ self.view_embed = nn.Conv2d(vdim, dim, 1, 1)
10
+ self.conv = nn.Sequential(
11
+ norm(dim),
12
+ nn.SiLU(True),
13
+ nn.Conv2d(dim, dim, 3, 1, 1),
14
+ norm(dim),
15
+ nn.SiLU(True),
16
+ nn.Conv2d(dim, dim, 3, 1, 1),
17
+ )
18
+
19
+ def forward(self, x, t, v):
20
+ return x+self.conv(x+self.time_embed(t)+self.view_embed(v))
21
+
22
+
23
+ class NoisyTargetViewEncoder(nn.Module):
24
+ def __init__(self, time_embed_dim, viewpoint_dim, run_dim=16, output_dim=8):
25
+ super().__init__()
26
+
27
+ self.init_conv = nn.Conv2d(4, run_dim, 3, 1, 1)
28
+ self.out_conv0 = Image2DResBlockWithTV(run_dim, time_embed_dim, viewpoint_dim)
29
+ self.out_conv1 = Image2DResBlockWithTV(run_dim, time_embed_dim, viewpoint_dim)
30
+ self.out_conv2 = Image2DResBlockWithTV(run_dim, time_embed_dim, viewpoint_dim)
31
+ self.final_out = nn.Sequential(
32
+ nn.GroupNorm(8, run_dim),
33
+ nn.SiLU(True),
34
+ nn.Conv2d(run_dim, output_dim, 3, 1, 1)
35
+ )
36
+
37
+ def forward(self, x, t, v):
38
+ B, DT = t.shape
39
+ t = t.view(B, DT, 1, 1)
40
+ B, DV = v.shape
41
+ v = v.view(B, DV, 1, 1)
42
+
43
+ x = self.init_conv(x)
44
+ x = self.out_conv0(x, t, v)
45
+ x = self.out_conv1(x, t, v)
46
+ x = self.out_conv2(x, t, v)
47
+ x = self.final_out(x)
48
+ return x
49
+
50
+ class SpatialUpTimeBlock(nn.Module):
51
+ def __init__(self, x_in_dim, t_in_dim, out_dim):
52
+ super().__init__()
53
+ norm_act = lambda c: nn.GroupNorm(8, c)
54
+ self.t_conv = nn.Conv3d(t_in_dim, x_in_dim, 1, 1) # 16
55
+ self.norm = norm_act(x_in_dim)
56
+ self.silu = nn.SiLU(True)
57
+ self.conv = nn.ConvTranspose3d(x_in_dim, out_dim, kernel_size=3, padding=1, output_padding=1, stride=2)
58
+
59
+ def forward(self, x, t):
60
+ x = x + self.t_conv(t)
61
+ return self.conv(self.silu(self.norm(x)))
62
+
63
+ class SpatialTimeBlock(nn.Module):
64
+ def __init__(self, x_in_dim, t_in_dim, out_dim, stride):
65
+ super().__init__()
66
+ norm_act = lambda c: nn.GroupNorm(8, c)
67
+ self.t_conv = nn.Conv3d(t_in_dim, x_in_dim, 1, 1) # 16
68
+ self.bn = norm_act(x_in_dim)
69
+ self.silu = nn.SiLU(True)
70
+ self.conv = nn.Conv3d(x_in_dim, out_dim, 3, stride=stride, padding=1)
71
+
72
+ def forward(self, x, t):
73
+ x = x + self.t_conv(t)
74
+ return self.conv(self.silu(self.bn(x)))
75
+
76
+ class SpatialTime3DNet(nn.Module):
77
+ def __init__(self, time_dim=256, input_dim=128, dims=(32, 64, 128, 256)):
78
+ super().__init__()
79
+ d0, d1, d2, d3 = dims
80
+ dt = time_dim
81
+
82
+ self.init_conv = nn.Conv3d(input_dim, d0, 3, 1, 1) # 32
83
+ self.conv0 = SpatialTimeBlock(d0, dt, d0, stride=1)
84
+
85
+ self.conv1 = SpatialTimeBlock(d0, dt, d1, stride=2)
86
+ self.conv2_0 = SpatialTimeBlock(d1, dt, d1, stride=1)
87
+ self.conv2_1 = SpatialTimeBlock(d1, dt, d1, stride=1)
88
+
89
+ self.conv3 = SpatialTimeBlock(d1, dt, d2, stride=2)
90
+ self.conv4_0 = SpatialTimeBlock(d2, dt, d2, stride=1)
91
+ self.conv4_1 = SpatialTimeBlock(d2, dt, d2, stride=1)
92
+
93
+ self.conv5 = SpatialTimeBlock(d2, dt, d3, stride=2)
94
+ self.conv6_0 = SpatialTimeBlock(d3, dt, d3, stride=1)
95
+ self.conv6_1 = SpatialTimeBlock(d3, dt, d3, stride=1)
96
+
97
+ self.conv7 = SpatialUpTimeBlock(d3, dt, d2)
98
+ self.conv8 = SpatialUpTimeBlock(d2, dt, d1)
99
+ self.conv9 = SpatialUpTimeBlock(d1, dt, d0)
100
+
101
+ def forward(self, x, t):
102
+ B, C = t.shape
103
+ t = t.view(B, C, 1, 1, 1)
104
+
105
+ x = self.init_conv(x)
106
+ conv0 = self.conv0(x, t)
107
+
108
+ x = self.conv1(conv0, t)
109
+ x = self.conv2_0(x, t)
110
+ conv2 = self.conv2_1(x, t)
111
+
112
+ x = self.conv3(conv2, t)
113
+ x = self.conv4_0(x, t)
114
+ conv4 = self.conv4_1(x, t)
115
+
116
+ x = self.conv5(conv4, t)
117
+ x = self.conv6_0(x, t)
118
+ x = self.conv6_1(x, t)
119
+
120
+ x = conv4 + self.conv7(x, t)
121
+ x = conv2 + self.conv8(x, t)
122
+ x = conv0 + self.conv9(x, t)
123
+ return x
124
+
125
+ class FrustumTVBlock(nn.Module):
126
+ def __init__(self, x_dim, t_dim, v_dim, out_dim, stride):
127
+ super().__init__()
128
+ norm_act = lambda c: nn.GroupNorm(8, c)
129
+ self.t_conv = nn.Conv3d(t_dim, x_dim, 1, 1) # 16
130
+ self.v_conv = nn.Conv3d(v_dim, x_dim, 1, 1) # 16
131
+ self.bn = norm_act(x_dim)
132
+ self.silu = nn.SiLU(True)
133
+ self.conv = nn.Conv3d(x_dim, out_dim, 3, stride=stride, padding=1)
134
+
135
+ def forward(self, x, t, v):
136
+ x = x + self.t_conv(t) + self.v_conv(v)
137
+ return self.conv(self.silu(self.bn(x)))
138
+
139
+ class FrustumTVUpBlock(nn.Module):
140
+ def __init__(self, x_dim, t_dim, v_dim, out_dim):
141
+ super().__init__()
142
+ norm_act = lambda c: nn.GroupNorm(8, c)
143
+ self.t_conv = nn.Conv3d(t_dim, x_dim, 1, 1) # 16
144
+ self.v_conv = nn.Conv3d(v_dim, x_dim, 1, 1) # 16
145
+ self.norm = norm_act(x_dim)
146
+ self.silu = nn.SiLU(True)
147
+ self.conv = nn.ConvTranspose3d(x_dim, out_dim, kernel_size=3, padding=1, output_padding=1, stride=2)
148
+
149
+ def forward(self, x, t, v):
150
+ x = x + self.t_conv(t) + self.v_conv(v)
151
+ return self.conv(self.silu(self.norm(x)))
152
+
153
+ class FrustumTV3DNet(nn.Module):
154
+ def __init__(self, in_dim, t_dim, v_dim, dims=(32, 64, 128, 256)):
155
+ super().__init__()
156
+ self.conv0 = nn.Conv3d(in_dim, dims[0], 3, 1, 1) # 32
157
+
158
+ self.conv1 = FrustumTVBlock(dims[0], t_dim, v_dim, dims[1], 2)
159
+ self.conv2 = FrustumTVBlock(dims[1], t_dim, v_dim, dims[1], 1)
160
+
161
+ self.conv3 = FrustumTVBlock(dims[1], t_dim, v_dim, dims[2], 2)
162
+ self.conv4 = FrustumTVBlock(dims[2], t_dim, v_dim, dims[2], 1)
163
+
164
+ self.conv5 = FrustumTVBlock(dims[2], t_dim, v_dim, dims[3], 2)
165
+ self.conv6 = FrustumTVBlock(dims[3], t_dim, v_dim, dims[3], 1)
166
+
167
+ self.up0 = FrustumTVUpBlock(dims[3], t_dim, v_dim, dims[2])
168
+ self.up1 = FrustumTVUpBlock(dims[2], t_dim, v_dim, dims[1])
169
+ self.up2 = FrustumTVUpBlock(dims[1], t_dim, v_dim, dims[0])
170
+
171
+ def forward(self, x, t, v):
172
+ B,DT = t.shape
173
+ t = t.view(B,DT,1,1,1)
174
+ B,DV = v.shape
175
+ v = v.view(B,DV,1,1,1)
176
+
177
+ b, _, d, h, w = x.shape
178
+ x0 = self.conv0(x)
179
+ x1 = self.conv2(self.conv1(x0, t, v), t, v)
180
+ x2 = self.conv4(self.conv3(x1, t, v), t, v)
181
+ x3 = self.conv6(self.conv5(x2, t, v), t, v)
182
+
183
+ x2 = self.up0(x3, t, v) + x2
184
+ x1 = self.up1(x2, t, v) + x1
185
+ x0 = self.up2(x1, t, v) + x0
186
+ return {w: x0, w//2: x1, w//4: x2, w//8: x3}
ldm/models/diffusion/sync_dreamer_utils.py ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from kornia import create_meshgrid
3
+
4
+
5
+ def project_and_normalize(ref_grid, src_proj, length):
6
+ """
7
+
8
+ @param ref_grid: b 3 n
9
+ @param src_proj: b 4 4
10
+ @param length: int
11
+ @return: b, n, 2
12
+ """
13
+ src_grid = src_proj[:, :3, :3] @ ref_grid + src_proj[:, :3, 3:] # b 3 n
14
+ div_val = src_grid[:, -1:]
15
+ div_val[div_val<1e-4] = 1e-4
16
+ src_grid = src_grid[:, :2] / div_val # divide by depth (b, 2, n)
17
+ src_grid[:, 0] = src_grid[:, 0]/((length - 1) / 2) - 1 # scale to -1~1
18
+ src_grid[:, 1] = src_grid[:, 1]/((length - 1) / 2) - 1 # scale to -1~1
19
+ src_grid = src_grid.permute(0, 2, 1) # (b, n, 2)
20
+ return src_grid
21
+
22
+
23
+ def construct_project_matrix(x_ratio, y_ratio, Ks, poses):
24
+ """
25
+ @param x_ratio: float
26
+ @param y_ratio: float
27
+ @param Ks: b,3,3
28
+ @param poses: b,3,4
29
+ @return:
30
+ """
31
+ rfn = Ks.shape[0]
32
+ scale_m = torch.tensor([x_ratio, y_ratio, 1.0], dtype=torch.float32, device=Ks.device)
33
+ scale_m = torch.diag(scale_m)
34
+ ref_prj = scale_m[None, :, :] @ Ks @ poses # rfn,3,4
35
+ pad_vals = torch.zeros([rfn, 1, 4], dtype=torch.float32, device=ref_prj.device)
36
+ pad_vals[:, :, 3] = 1.0
37
+ ref_prj = torch.cat([ref_prj, pad_vals], 1) # rfn,4,4
38
+ return ref_prj
39
+
40
+ def get_warp_coordinates(volume_xyz, warp_size, input_size, Ks, warp_pose):
41
+ B, _, D, H, W = volume_xyz.shape
42
+ ratio = warp_size / input_size
43
+ warp_proj = construct_project_matrix(ratio, ratio, Ks, warp_pose) # B,4,4
44
+ warp_coords = project_and_normalize(volume_xyz.view(B,3,D*H*W), warp_proj, warp_size).view(B, D, H, W, 2)
45
+ return warp_coords
46
+
47
+
48
+ def create_target_volume(depth_size, volume_size, input_image_size, pose_target, K, near=None, far=None):
49
+ device, dtype = pose_target.device, pose_target.dtype
50
+
51
+ # compute a depth range on the unit sphere
52
+ H, W, D, B = volume_size, volume_size, depth_size, pose_target.shape[0]
53
+ if near is not None and far is not None :
54
+ # near, far b,1,h,w
55
+ depth_values = torch.linspace(0, 1, steps=depth_size).to(near.device).to(near.dtype) # d
56
+ depth_values = depth_values.view(1, D, 1, 1) # 1,d,1,1
57
+ depth_values = depth_values * (far - near) + near # b d h w
58
+ depth_values = depth_values.view(B, 1, D, H * W)
59
+ else:
60
+ near, far = near_far_from_unit_sphere_using_camera_poses(pose_target) # b 1
61
+ depth_values = torch.linspace(0, 1, steps=depth_size).to(near.device).to(near.dtype) # d
62
+ depth_values = depth_values[None,:,None] * (far[:,None,:] - near[:,None,:]) + near[:,None,:] # b d 1
63
+ depth_values = depth_values.view(B, 1, D, 1).expand(B, 1, D, H*W)
64
+
65
+ ratio = volume_size / input_image_size
66
+
67
+ # creat a grid on the target (reference) view
68
+ # H, W, D, B = volume_size, volume_size, depth_values.shape[1], depth_values.shape[0]
69
+
70
+ # creat mesh grid: note reference also means target
71
+ ref_grid = create_meshgrid(H, W, normalized_coordinates=False) # (1, H, W, 2)
72
+ ref_grid = ref_grid.to(device).to(dtype)
73
+ ref_grid = ref_grid.permute(0, 3, 1, 2) # (1, 2, H, W)
74
+ ref_grid = ref_grid.reshape(1, 2, H*W) # (1, 2, H*W)
75
+ ref_grid = ref_grid.expand(B, -1, -1) # (B, 2, H*W)
76
+ ref_grid = torch.cat((ref_grid, torch.ones(B, 1, H*W, dtype=ref_grid.dtype, device=ref_grid.device)), dim=1) # (B, 3, H*W)
77
+ ref_grid = ref_grid.unsqueeze(2) * depth_values # (B, 3, D, H*W)
78
+
79
+ # unproject to space and transfer to world coordinates.
80
+ Ks = K
81
+ ref_proj = construct_project_matrix(ratio, ratio, Ks, pose_target) # B,4,4
82
+ ref_proj_inv = torch.inverse(ref_proj) # B,4,4
83
+ ref_grid = ref_proj_inv[:,:3,:3] @ ref_grid.view(B,3,D*H*W) + ref_proj_inv[:,:3,3:] # B,3,3 @ B,3,DHW + B,3,1 => B,3,DHW
84
+ return ref_grid.reshape(B,3,D,H,W), depth_values.view(B,1,D,H,W)
85
+
86
+ def near_far_from_unit_sphere_using_camera_poses(camera_poses):
87
+ """
88
+ @param camera_poses: b 3 4
89
+ @return:
90
+ near: b,1
91
+ far: b,1
92
+ """
93
+ R_w2c = camera_poses[..., :3, :3] # b 3 3
94
+ t_w2c = camera_poses[..., :3, 3:] # b 3 1
95
+ camera_origin = -R_w2c.permute(0,2,1) @ t_w2c # b 3 1
96
+ # R_w2c.T @ (0,0,1) = z_dir
97
+ camera_orient = R_w2c.permute(0,2,1)[...,:3,2:3] # b 3 1
98
+ camera_origin, camera_orient = camera_origin[...,0], camera_orient[..., 0] # b 3
99
+ a = torch.sum(camera_orient ** 2, dim=-1, keepdim=True) # b 1
100
+ b = -torch.sum(camera_orient * camera_origin, dim=-1, keepdim=True) # b 1
101
+ mid = b / a # b 1
102
+ near, far = mid - 1.0, mid + 1.0
103
+ return near, far
ldm/modules/attention.py ADDED
@@ -0,0 +1,336 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from inspect import isfunction
2
+ import math
3
+ import torch
4
+ import torch.nn.functional as F
5
+ from torch import nn, einsum
6
+ from einops import rearrange, repeat
7
+
8
+ from ldm.modules.diffusionmodules.util import checkpoint
9
+
10
+
11
+ def exists(val):
12
+ return val is not None
13
+
14
+
15
+ def uniq(arr):
16
+ return{el: True for el in arr}.keys()
17
+
18
+
19
+ def default(val, d):
20
+ if exists(val):
21
+ return val
22
+ return d() if isfunction(d) else d
23
+
24
+
25
+ def max_neg_value(t):
26
+ return -torch.finfo(t.dtype).max
27
+
28
+
29
+ def init_(tensor):
30
+ dim = tensor.shape[-1]
31
+ std = 1 / math.sqrt(dim)
32
+ tensor.uniform_(-std, std)
33
+ return tensor
34
+
35
+
36
+ # feedforward
37
+ class GEGLU(nn.Module):
38
+ def __init__(self, dim_in, dim_out):
39
+ super().__init__()
40
+ self.proj = nn.Linear(dim_in, dim_out * 2)
41
+
42
+ def forward(self, x):
43
+ x, gate = self.proj(x).chunk(2, dim=-1)
44
+ return x * F.gelu(gate)
45
+ # feedforward
46
+ class ConvGEGLU(nn.Module):
47
+ def __init__(self, dim_in, dim_out):
48
+ super().__init__()
49
+ self.proj = nn.Conv2d(dim_in, dim_out * 2, 1, 1, 0)
50
+
51
+ def forward(self, x):
52
+ x, gate = self.proj(x).chunk(2, dim=1)
53
+ return x * F.gelu(gate)
54
+
55
+
56
+ class FeedForward(nn.Module):
57
+ def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.):
58
+ super().__init__()
59
+ inner_dim = int(dim * mult)
60
+ dim_out = default(dim_out, dim)
61
+ project_in = nn.Sequential(
62
+ nn.Linear(dim, inner_dim),
63
+ nn.GELU()
64
+ ) if not glu else GEGLU(dim, inner_dim)
65
+
66
+ self.net = nn.Sequential(
67
+ project_in,
68
+ nn.Dropout(dropout),
69
+ nn.Linear(inner_dim, dim_out)
70
+ )
71
+
72
+ def forward(self, x):
73
+ return self.net(x)
74
+
75
+
76
+ def zero_module(module):
77
+ """
78
+ Zero out the parameters of a module and return it.
79
+ """
80
+ for p in module.parameters():
81
+ p.detach().zero_()
82
+ return module
83
+
84
+
85
+ def Normalize(in_channels):
86
+ return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
87
+
88
+
89
+ class LinearAttention(nn.Module):
90
+ def __init__(self, dim, heads=4, dim_head=32):
91
+ super().__init__()
92
+ self.heads = heads
93
+ hidden_dim = dim_head * heads
94
+ self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias = False)
95
+ self.to_out = nn.Conv2d(hidden_dim, dim, 1)
96
+
97
+ def forward(self, x):
98
+ b, c, h, w = x.shape
99
+ qkv = self.to_qkv(x)
100
+ q, k, v = rearrange(qkv, 'b (qkv heads c) h w -> qkv b heads c (h w)', heads = self.heads, qkv=3)
101
+ k = k.softmax(dim=-1)
102
+ context = torch.einsum('bhdn,bhen->bhde', k, v)
103
+ out = torch.einsum('bhde,bhdn->bhen', context, q)
104
+ out = rearrange(out, 'b heads c (h w) -> b (heads c) h w', heads=self.heads, h=h, w=w)
105
+ return self.to_out(out)
106
+
107
+
108
+ class SpatialSelfAttention(nn.Module):
109
+ def __init__(self, in_channels):
110
+ super().__init__()
111
+ self.in_channels = in_channels
112
+
113
+ self.norm = Normalize(in_channels)
114
+ self.q = torch.nn.Conv2d(in_channels,
115
+ in_channels,
116
+ kernel_size=1,
117
+ stride=1,
118
+ padding=0)
119
+ self.k = torch.nn.Conv2d(in_channels,
120
+ in_channels,
121
+ kernel_size=1,
122
+ stride=1,
123
+ padding=0)
124
+ self.v = torch.nn.Conv2d(in_channels,
125
+ in_channels,
126
+ kernel_size=1,
127
+ stride=1,
128
+ padding=0)
129
+ self.proj_out = torch.nn.Conv2d(in_channels,
130
+ in_channels,
131
+ kernel_size=1,
132
+ stride=1,
133
+ padding=0)
134
+
135
+ def forward(self, x):
136
+ h_ = x
137
+ h_ = self.norm(h_)
138
+ q = self.q(h_)
139
+ k = self.k(h_)
140
+ v = self.v(h_)
141
+
142
+ # compute attention
143
+ b,c,h,w = q.shape
144
+ q = rearrange(q, 'b c h w -> b (h w) c')
145
+ k = rearrange(k, 'b c h w -> b c (h w)')
146
+ w_ = torch.einsum('bij,bjk->bik', q, k)
147
+
148
+ w_ = w_ * (int(c)**(-0.5))
149
+ w_ = torch.nn.functional.softmax(w_, dim=2)
150
+
151
+ # attend to values
152
+ v = rearrange(v, 'b c h w -> b c (h w)')
153
+ w_ = rearrange(w_, 'b i j -> b j i')
154
+ h_ = torch.einsum('bij,bjk->bik', v, w_)
155
+ h_ = rearrange(h_, 'b c (h w) -> b c h w', h=h)
156
+ h_ = self.proj_out(h_)
157
+
158
+ return x+h_
159
+
160
+
161
+ class CrossAttention(nn.Module):
162
+ def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.):
163
+ super().__init__()
164
+ inner_dim = dim_head * heads
165
+ context_dim = default(context_dim, query_dim)
166
+
167
+ self.scale = dim_head ** -0.5
168
+ self.heads = heads
169
+
170
+ self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
171
+ self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
172
+ self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
173
+
174
+ self.to_out = nn.Sequential(
175
+ nn.Linear(inner_dim, query_dim),
176
+ nn.Dropout(dropout)
177
+ )
178
+
179
+ def forward(self, x, context=None, mask=None):
180
+ h = self.heads
181
+
182
+ q = self.to_q(x)
183
+ context = default(context, x)
184
+ k = self.to_k(context)
185
+ v = self.to_v(context)
186
+
187
+ q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
188
+
189
+ sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
190
+
191
+ if exists(mask):
192
+ mask = mask>0
193
+ mask = rearrange(mask, 'b ... -> b (...)')
194
+ max_neg_value = -torch.finfo(sim.dtype).max
195
+ mask = repeat(mask, 'b j -> (b h) () j', h=h)
196
+ sim.masked_fill_(~mask, max_neg_value)
197
+
198
+ # attention, what we cannot get enough of
199
+ attn = sim.softmax(dim=-1)
200
+
201
+ out = einsum('b i j, b j d -> b i d', attn, v)
202
+ out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
203
+ return self.to_out(out)
204
+
205
+ class BasicSpatialTransformer(nn.Module):
206
+ def __init__(self, dim, n_heads, d_head, context_dim=None, checkpoint=True):
207
+ super().__init__()
208
+ inner_dim = n_heads * d_head
209
+ self.proj_in = nn.Sequential(
210
+ nn.GroupNorm(8, dim),
211
+ nn.Conv2d(dim, inner_dim, kernel_size=1, stride=1, padding=0),
212
+ nn.GroupNorm(8, inner_dim),
213
+ nn.ReLU(True),
214
+ )
215
+ self.attn = CrossAttention(query_dim=inner_dim, heads=n_heads, dim_head=d_head, context_dim=context_dim) # is a self-attention if not self.disable_self_attn
216
+ self.out_conv = nn.Sequential(
217
+ nn.GroupNorm(8, inner_dim),
218
+ nn.ReLU(True),
219
+ nn.Conv2d(inner_dim, inner_dim, 1, 1),
220
+ )
221
+ self.proj_out = nn.Sequential(
222
+ nn.GroupNorm(8, inner_dim),
223
+ nn.ReLU(True),
224
+ zero_module(nn.Conv2d(inner_dim, dim, kernel_size=1, stride=1, padding=0)),
225
+ )
226
+ self.checkpoint = checkpoint
227
+
228
+ def forward(self, x, context=None):
229
+ return checkpoint(self._forward, (x, context), self.parameters(), self.checkpoint)
230
+
231
+ def _forward(self, x, context):
232
+ # input
233
+ b,_,h,w = x.shape
234
+ x_in = x
235
+ x = self.proj_in(x)
236
+
237
+ # attention
238
+ x = rearrange(x, 'b c h w -> b (h w) c').contiguous()
239
+ context = rearrange(context, 'b c h w -> b (h w) c').contiguous()
240
+ x = self.attn(x, context) + x
241
+ x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w).contiguous()
242
+
243
+ # output
244
+ x = self.out_conv(x) + x
245
+ x = self.proj_out(x) + x_in
246
+ return x
247
+
248
+ class BasicTransformerBlock(nn.Module):
249
+ def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True, disable_self_attn=False):
250
+ super().__init__()
251
+ self.disable_self_attn = disable_self_attn
252
+ self.attn1 = CrossAttention(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout,
253
+ context_dim=context_dim if self.disable_self_attn else None) # is a self-attention if not self.disable_self_attn
254
+ self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
255
+ self.attn2 = CrossAttention(query_dim=dim, context_dim=context_dim,
256
+ heads=n_heads, dim_head=d_head, dropout=dropout) # is self-attn if context is none
257
+ self.norm1 = nn.LayerNorm(dim)
258
+ self.norm2 = nn.LayerNorm(dim)
259
+ self.norm3 = nn.LayerNorm(dim)
260
+ self.checkpoint = checkpoint
261
+
262
+ def forward(self, x, context=None):
263
+ return checkpoint(self._forward, (x, context), self.parameters(), self.checkpoint)
264
+
265
+ def _forward(self, x, context=None):
266
+ x = self.attn1(self.norm1(x), context=context if self.disable_self_attn else None) + x
267
+ x = self.attn2(self.norm2(x), context=context) + x
268
+ x = self.ff(self.norm3(x)) + x
269
+ return x
270
+
271
+ class ConvFeedForward(nn.Module):
272
+ def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.):
273
+ super().__init__()
274
+ inner_dim = int(dim * mult)
275
+ dim_out = default(dim_out, dim)
276
+ project_in = nn.Sequential(
277
+ nn.Conv2d(dim, inner_dim, 1, 1, 0),
278
+ nn.GELU()
279
+ ) if not glu else ConvGEGLU(dim, inner_dim)
280
+
281
+ self.net = nn.Sequential(
282
+ project_in,
283
+ nn.Dropout(dropout),
284
+ nn.Conv2d(inner_dim, dim_out, 1, 1, 0)
285
+ )
286
+
287
+ def forward(self, x):
288
+ return self.net(x)
289
+
290
+
291
+ class SpatialTransformer(nn.Module):
292
+ """
293
+ Transformer block for image-like data.
294
+ First, project the input (aka embedding)
295
+ and reshape to b, t, d.
296
+ Then apply standard transformer action.
297
+ Finally, reshape to image
298
+ """
299
+ def __init__(self, in_channels, n_heads, d_head,
300
+ depth=1, dropout=0., context_dim=None,
301
+ disable_self_attn=False):
302
+ super().__init__()
303
+ self.in_channels = in_channels
304
+ inner_dim = n_heads * d_head
305
+ self.norm = Normalize(in_channels)
306
+
307
+ self.proj_in = nn.Conv2d(in_channels,
308
+ inner_dim,
309
+ kernel_size=1,
310
+ stride=1,
311
+ padding=0)
312
+
313
+ self.transformer_blocks = nn.ModuleList(
314
+ [BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim,
315
+ disable_self_attn=disable_self_attn)
316
+ for d in range(depth)]
317
+ )
318
+
319
+ self.proj_out = zero_module(nn.Conv2d(inner_dim,
320
+ in_channels,
321
+ kernel_size=1,
322
+ stride=1,
323
+ padding=0))
324
+
325
+ def forward(self, x, context=None):
326
+ # note: if no context is given, cross-attention defaults to self-attention
327
+ b, c, h, w = x.shape
328
+ x_in = x
329
+ x = self.norm(x)
330
+ x = self.proj_in(x)
331
+ x = rearrange(x, 'b c h w -> b (h w) c').contiguous()
332
+ for block in self.transformer_blocks:
333
+ x = block(x, context=context)
334
+ x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w).contiguous()
335
+ x = self.proj_out(x)
336
+ return x + x_in
ldm/modules/diffusionmodules/__init__.py ADDED
File without changes
ldm/modules/diffusionmodules/model.py ADDED
@@ -0,0 +1,835 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # pytorch_diffusion + derived encoder decoder
2
+ import math
3
+ import torch
4
+ import torch.nn as nn
5
+ import numpy as np
6
+ from einops import rearrange
7
+
8
+ from ldm.util import instantiate_from_config
9
+ from ldm.modules.attention import LinearAttention
10
+
11
+
12
+ def get_timestep_embedding(timesteps, embedding_dim):
13
+ """
14
+ This matches the implementation in Denoising Diffusion Probabilistic Models:
15
+ From Fairseq.
16
+ Build sinusoidal embeddings.
17
+ This matches the implementation in tensor2tensor, but differs slightly
18
+ from the description in Section 3.5 of "Attention Is All You Need".
19
+ """
20
+ assert len(timesteps.shape) == 1
21
+
22
+ half_dim = embedding_dim // 2
23
+ emb = math.log(10000) / (half_dim - 1)
24
+ emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb)
25
+ emb = emb.to(device=timesteps.device)
26
+ emb = timesteps.float()[:, None] * emb[None, :]
27
+ emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
28
+ if embedding_dim % 2 == 1: # zero pad
29
+ emb = torch.nn.functional.pad(emb, (0,1,0,0))
30
+ return emb
31
+
32
+
33
+ def nonlinearity(x):
34
+ # swish
35
+ return x*torch.sigmoid(x)
36
+
37
+
38
+ def Normalize(in_channels, num_groups=32):
39
+ return torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True)
40
+
41
+
42
+ class Upsample(nn.Module):
43
+ def __init__(self, in_channels, with_conv):
44
+ super().__init__()
45
+ self.with_conv = with_conv
46
+ if self.with_conv:
47
+ self.conv = torch.nn.Conv2d(in_channels,
48
+ in_channels,
49
+ kernel_size=3,
50
+ stride=1,
51
+ padding=1)
52
+
53
+ def forward(self, x):
54
+ x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
55
+ if self.with_conv:
56
+ x = self.conv(x)
57
+ return x
58
+
59
+
60
+ class Downsample(nn.Module):
61
+ def __init__(self, in_channels, with_conv):
62
+ super().__init__()
63
+ self.with_conv = with_conv
64
+ if self.with_conv:
65
+ # no asymmetric padding in torch conv, must do it ourselves
66
+ self.conv = torch.nn.Conv2d(in_channels,
67
+ in_channels,
68
+ kernel_size=3,
69
+ stride=2,
70
+ padding=0)
71
+
72
+ def forward(self, x):
73
+ if self.with_conv:
74
+ pad = (0,1,0,1)
75
+ x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
76
+ x = self.conv(x)
77
+ else:
78
+ x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2)
79
+ return x
80
+
81
+
82
+ class ResnetBlock(nn.Module):
83
+ def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False,
84
+ dropout, temb_channels=512):
85
+ super().__init__()
86
+ self.in_channels = in_channels
87
+ out_channels = in_channels if out_channels is None else out_channels
88
+ self.out_channels = out_channels
89
+ self.use_conv_shortcut = conv_shortcut
90
+
91
+ self.norm1 = Normalize(in_channels)
92
+ self.conv1 = torch.nn.Conv2d(in_channels,
93
+ out_channels,
94
+ kernel_size=3,
95
+ stride=1,
96
+ padding=1)
97
+ if temb_channels > 0:
98
+ self.temb_proj = torch.nn.Linear(temb_channels,
99
+ out_channels)
100
+ self.norm2 = Normalize(out_channels)
101
+ self.dropout = torch.nn.Dropout(dropout)
102
+ self.conv2 = torch.nn.Conv2d(out_channels,
103
+ out_channels,
104
+ kernel_size=3,
105
+ stride=1,
106
+ padding=1)
107
+ if self.in_channels != self.out_channels:
108
+ if self.use_conv_shortcut:
109
+ self.conv_shortcut = torch.nn.Conv2d(in_channels,
110
+ out_channels,
111
+ kernel_size=3,
112
+ stride=1,
113
+ padding=1)
114
+ else:
115
+ self.nin_shortcut = torch.nn.Conv2d(in_channels,
116
+ out_channels,
117
+ kernel_size=1,
118
+ stride=1,
119
+ padding=0)
120
+
121
+ def forward(self, x, temb):
122
+ h = x
123
+ h = self.norm1(h)
124
+ h = nonlinearity(h)
125
+ h = self.conv1(h)
126
+
127
+ if temb is not None:
128
+ h = h + self.temb_proj(nonlinearity(temb))[:,:,None,None]
129
+
130
+ h = self.norm2(h)
131
+ h = nonlinearity(h)
132
+ h = self.dropout(h)
133
+ h = self.conv2(h)
134
+
135
+ if self.in_channels != self.out_channels:
136
+ if self.use_conv_shortcut:
137
+ x = self.conv_shortcut(x)
138
+ else:
139
+ x = self.nin_shortcut(x)
140
+
141
+ return x+h
142
+
143
+
144
+ class LinAttnBlock(LinearAttention):
145
+ """to match AttnBlock usage"""
146
+ def __init__(self, in_channels):
147
+ super().__init__(dim=in_channels, heads=1, dim_head=in_channels)
148
+
149
+
150
+ class AttnBlock(nn.Module):
151
+ def __init__(self, in_channels):
152
+ super().__init__()
153
+ self.in_channels = in_channels
154
+
155
+ self.norm = Normalize(in_channels)
156
+ self.q = torch.nn.Conv2d(in_channels,
157
+ in_channels,
158
+ kernel_size=1,
159
+ stride=1,
160
+ padding=0)
161
+ self.k = torch.nn.Conv2d(in_channels,
162
+ in_channels,
163
+ kernel_size=1,
164
+ stride=1,
165
+ padding=0)
166
+ self.v = torch.nn.Conv2d(in_channels,
167
+ in_channels,
168
+ kernel_size=1,
169
+ stride=1,
170
+ padding=0)
171
+ self.proj_out = torch.nn.Conv2d(in_channels,
172
+ in_channels,
173
+ kernel_size=1,
174
+ stride=1,
175
+ padding=0)
176
+
177
+
178
+ def forward(self, x):
179
+ h_ = x
180
+ h_ = self.norm(h_)
181
+ q = self.q(h_)
182
+ k = self.k(h_)
183
+ v = self.v(h_)
184
+
185
+ # compute attention
186
+ b,c,h,w = q.shape
187
+ q = q.reshape(b,c,h*w)
188
+ q = q.permute(0,2,1) # b,hw,c
189
+ k = k.reshape(b,c,h*w) # b,c,hw
190
+ w_ = torch.bmm(q,k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
191
+ w_ = w_ * (int(c)**(-0.5))
192
+ w_ = torch.nn.functional.softmax(w_, dim=2)
193
+
194
+ # attend to values
195
+ v = v.reshape(b,c,h*w)
196
+ w_ = w_.permute(0,2,1) # b,hw,hw (first hw of k, second of q)
197
+ h_ = torch.bmm(v,w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
198
+ h_ = h_.reshape(b,c,h,w)
199
+
200
+ h_ = self.proj_out(h_)
201
+
202
+ return x+h_
203
+
204
+
205
+ def make_attn(in_channels, attn_type="vanilla"):
206
+ assert attn_type in ["vanilla", "linear", "none"], f'attn_type {attn_type} unknown'
207
+ print(f"making attention of type '{attn_type}' with {in_channels} in_channels")
208
+ if attn_type == "vanilla":
209
+ return AttnBlock(in_channels)
210
+ elif attn_type == "none":
211
+ return nn.Identity(in_channels)
212
+ else:
213
+ return LinAttnBlock(in_channels)
214
+
215
+
216
+ class Model(nn.Module):
217
+ def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
218
+ attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
219
+ resolution, use_timestep=True, use_linear_attn=False, attn_type="vanilla"):
220
+ super().__init__()
221
+ if use_linear_attn: attn_type = "linear"
222
+ self.ch = ch
223
+ self.temb_ch = self.ch*4
224
+ self.num_resolutions = len(ch_mult)
225
+ self.num_res_blocks = num_res_blocks
226
+ self.resolution = resolution
227
+ self.in_channels = in_channels
228
+
229
+ self.use_timestep = use_timestep
230
+ if self.use_timestep:
231
+ # timestep embedding
232
+ self.temb = nn.Module()
233
+ self.temb.dense = nn.ModuleList([
234
+ torch.nn.Linear(self.ch,
235
+ self.temb_ch),
236
+ torch.nn.Linear(self.temb_ch,
237
+ self.temb_ch),
238
+ ])
239
+
240
+ # downsampling
241
+ self.conv_in = torch.nn.Conv2d(in_channels,
242
+ self.ch,
243
+ kernel_size=3,
244
+ stride=1,
245
+ padding=1)
246
+
247
+ curr_res = resolution
248
+ in_ch_mult = (1,)+tuple(ch_mult)
249
+ self.down = nn.ModuleList()
250
+ for i_level in range(self.num_resolutions):
251
+ block = nn.ModuleList()
252
+ attn = nn.ModuleList()
253
+ block_in = ch*in_ch_mult[i_level]
254
+ block_out = ch*ch_mult[i_level]
255
+ for i_block in range(self.num_res_blocks):
256
+ block.append(ResnetBlock(in_channels=block_in,
257
+ out_channels=block_out,
258
+ temb_channels=self.temb_ch,
259
+ dropout=dropout))
260
+ block_in = block_out
261
+ if curr_res in attn_resolutions:
262
+ attn.append(make_attn(block_in, attn_type=attn_type))
263
+ down = nn.Module()
264
+ down.block = block
265
+ down.attn = attn
266
+ if i_level != self.num_resolutions-1:
267
+ down.downsample = Downsample(block_in, resamp_with_conv)
268
+ curr_res = curr_res // 2
269
+ self.down.append(down)
270
+
271
+ # middle
272
+ self.mid = nn.Module()
273
+ self.mid.block_1 = ResnetBlock(in_channels=block_in,
274
+ out_channels=block_in,
275
+ temb_channels=self.temb_ch,
276
+ dropout=dropout)
277
+ self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
278
+ self.mid.block_2 = ResnetBlock(in_channels=block_in,
279
+ out_channels=block_in,
280
+ temb_channels=self.temb_ch,
281
+ dropout=dropout)
282
+
283
+ # upsampling
284
+ self.up = nn.ModuleList()
285
+ for i_level in reversed(range(self.num_resolutions)):
286
+ block = nn.ModuleList()
287
+ attn = nn.ModuleList()
288
+ block_out = ch*ch_mult[i_level]
289
+ skip_in = ch*ch_mult[i_level]
290
+ for i_block in range(self.num_res_blocks+1):
291
+ if i_block == self.num_res_blocks:
292
+ skip_in = ch*in_ch_mult[i_level]
293
+ block.append(ResnetBlock(in_channels=block_in+skip_in,
294
+ out_channels=block_out,
295
+ temb_channels=self.temb_ch,
296
+ dropout=dropout))
297
+ block_in = block_out
298
+ if curr_res in attn_resolutions:
299
+ attn.append(make_attn(block_in, attn_type=attn_type))
300
+ up = nn.Module()
301
+ up.block = block
302
+ up.attn = attn
303
+ if i_level != 0:
304
+ up.upsample = Upsample(block_in, resamp_with_conv)
305
+ curr_res = curr_res * 2
306
+ self.up.insert(0, up) # prepend to get consistent order
307
+
308
+ # end
309
+ self.norm_out = Normalize(block_in)
310
+ self.conv_out = torch.nn.Conv2d(block_in,
311
+ out_ch,
312
+ kernel_size=3,
313
+ stride=1,
314
+ padding=1)
315
+
316
+ def forward(self, x, t=None, context=None):
317
+ #assert x.shape[2] == x.shape[3] == self.resolution
318
+ if context is not None:
319
+ # assume aligned context, cat along channel axis
320
+ x = torch.cat((x, context), dim=1)
321
+ if self.use_timestep:
322
+ # timestep embedding
323
+ assert t is not None
324
+ temb = get_timestep_embedding(t, self.ch)
325
+ temb = self.temb.dense[0](temb)
326
+ temb = nonlinearity(temb)
327
+ temb = self.temb.dense[1](temb)
328
+ else:
329
+ temb = None
330
+
331
+ # downsampling
332
+ hs = [self.conv_in(x)]
333
+ for i_level in range(self.num_resolutions):
334
+ for i_block in range(self.num_res_blocks):
335
+ h = self.down[i_level].block[i_block](hs[-1], temb)
336
+ if len(self.down[i_level].attn) > 0:
337
+ h = self.down[i_level].attn[i_block](h)
338
+ hs.append(h)
339
+ if i_level != self.num_resolutions-1:
340
+ hs.append(self.down[i_level].downsample(hs[-1]))
341
+
342
+ # middle
343
+ h = hs[-1]
344
+ h = self.mid.block_1(h, temb)
345
+ h = self.mid.attn_1(h)
346
+ h = self.mid.block_2(h, temb)
347
+
348
+ # upsampling
349
+ for i_level in reversed(range(self.num_resolutions)):
350
+ for i_block in range(self.num_res_blocks+1):
351
+ h = self.up[i_level].block[i_block](
352
+ torch.cat([h, hs.pop()], dim=1), temb)
353
+ if len(self.up[i_level].attn) > 0:
354
+ h = self.up[i_level].attn[i_block](h)
355
+ if i_level != 0:
356
+ h = self.up[i_level].upsample(h)
357
+
358
+ # end
359
+ h = self.norm_out(h)
360
+ h = nonlinearity(h)
361
+ h = self.conv_out(h)
362
+ return h
363
+
364
+ def get_last_layer(self):
365
+ return self.conv_out.weight
366
+
367
+
368
+ class Encoder(nn.Module):
369
+ def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
370
+ attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
371
+ resolution, z_channels, double_z=True, use_linear_attn=False, attn_type="vanilla",
372
+ **ignore_kwargs):
373
+ super().__init__()
374
+ if use_linear_attn: attn_type = "linear"
375
+ self.ch = ch
376
+ self.temb_ch = 0
377
+ self.num_resolutions = len(ch_mult)
378
+ self.num_res_blocks = num_res_blocks
379
+ self.resolution = resolution
380
+ self.in_channels = in_channels
381
+
382
+ # downsampling
383
+ self.conv_in = torch.nn.Conv2d(in_channels,
384
+ self.ch,
385
+ kernel_size=3,
386
+ stride=1,
387
+ padding=1)
388
+
389
+ curr_res = resolution
390
+ in_ch_mult = (1,)+tuple(ch_mult)
391
+ self.in_ch_mult = in_ch_mult
392
+ self.down = nn.ModuleList()
393
+ for i_level in range(self.num_resolutions):
394
+ block = nn.ModuleList()
395
+ attn = nn.ModuleList()
396
+ block_in = ch*in_ch_mult[i_level]
397
+ block_out = ch*ch_mult[i_level]
398
+ for i_block in range(self.num_res_blocks):
399
+ block.append(ResnetBlock(in_channels=block_in,
400
+ out_channels=block_out,
401
+ temb_channels=self.temb_ch,
402
+ dropout=dropout))
403
+ block_in = block_out
404
+ if curr_res in attn_resolutions:
405
+ attn.append(make_attn(block_in, attn_type=attn_type))
406
+ down = nn.Module()
407
+ down.block = block
408
+ down.attn = attn
409
+ if i_level != self.num_resolutions-1:
410
+ down.downsample = Downsample(block_in, resamp_with_conv)
411
+ curr_res = curr_res // 2
412
+ self.down.append(down)
413
+
414
+ # middle
415
+ self.mid = nn.Module()
416
+ self.mid.block_1 = ResnetBlock(in_channels=block_in,
417
+ out_channels=block_in,
418
+ temb_channels=self.temb_ch,
419
+ dropout=dropout)
420
+ self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
421
+ self.mid.block_2 = ResnetBlock(in_channels=block_in,
422
+ out_channels=block_in,
423
+ temb_channels=self.temb_ch,
424
+ dropout=dropout)
425
+
426
+ # end
427
+ self.norm_out = Normalize(block_in)
428
+ self.conv_out = torch.nn.Conv2d(block_in,
429
+ 2*z_channels if double_z else z_channels,
430
+ kernel_size=3,
431
+ stride=1,
432
+ padding=1)
433
+
434
+ def forward(self, x):
435
+ # timestep embedding
436
+ temb = None
437
+
438
+ # downsampling
439
+ hs = [self.conv_in(x)]
440
+ for i_level in range(self.num_resolutions):
441
+ for i_block in range(self.num_res_blocks):
442
+ h = self.down[i_level].block[i_block](hs[-1], temb)
443
+ if len(self.down[i_level].attn) > 0:
444
+ h = self.down[i_level].attn[i_block](h)
445
+ hs.append(h)
446
+ if i_level != self.num_resolutions-1:
447
+ hs.append(self.down[i_level].downsample(hs[-1]))
448
+
449
+ # middle
450
+ h = hs[-1]
451
+ h = self.mid.block_1(h, temb)
452
+ h = self.mid.attn_1(h)
453
+ h = self.mid.block_2(h, temb)
454
+
455
+ # end
456
+ h = self.norm_out(h)
457
+ h = nonlinearity(h)
458
+ h = self.conv_out(h)
459
+ return h
460
+
461
+
462
+ class Decoder(nn.Module):
463
+ def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
464
+ attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
465
+ resolution, z_channels, give_pre_end=False, tanh_out=False, use_linear_attn=False,
466
+ attn_type="vanilla", **ignorekwargs):
467
+ super().__init__()
468
+ if use_linear_attn: attn_type = "linear"
469
+ self.ch = ch
470
+ self.temb_ch = 0
471
+ self.num_resolutions = len(ch_mult)
472
+ self.num_res_blocks = num_res_blocks
473
+ self.resolution = resolution
474
+ self.in_channels = in_channels
475
+ self.give_pre_end = give_pre_end
476
+ self.tanh_out = tanh_out
477
+
478
+ # compute in_ch_mult, block_in and curr_res at lowest res
479
+ in_ch_mult = (1,)+tuple(ch_mult)
480
+ block_in = ch*ch_mult[self.num_resolutions-1]
481
+ curr_res = resolution // 2**(self.num_resolutions-1)
482
+ self.z_shape = (1,z_channels,curr_res,curr_res)
483
+ print("Working with z of shape {} = {} dimensions.".format(
484
+ self.z_shape, np.prod(self.z_shape)))
485
+
486
+ # z to block_in
487
+ self.conv_in = torch.nn.Conv2d(z_channels,
488
+ block_in,
489
+ kernel_size=3,
490
+ stride=1,
491
+ padding=1)
492
+
493
+ # middle
494
+ self.mid = nn.Module()
495
+ self.mid.block_1 = ResnetBlock(in_channels=block_in,
496
+ out_channels=block_in,
497
+ temb_channels=self.temb_ch,
498
+ dropout=dropout)
499
+ self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
500
+ self.mid.block_2 = ResnetBlock(in_channels=block_in,
501
+ out_channels=block_in,
502
+ temb_channels=self.temb_ch,
503
+ dropout=dropout)
504
+
505
+ # upsampling
506
+ self.up = nn.ModuleList()
507
+ for i_level in reversed(range(self.num_resolutions)):
508
+ block = nn.ModuleList()
509
+ attn = nn.ModuleList()
510
+ block_out = ch*ch_mult[i_level]
511
+ for i_block in range(self.num_res_blocks+1):
512
+ block.append(ResnetBlock(in_channels=block_in,
513
+ out_channels=block_out,
514
+ temb_channels=self.temb_ch,
515
+ dropout=dropout))
516
+ block_in = block_out
517
+ if curr_res in attn_resolutions:
518
+ attn.append(make_attn(block_in, attn_type=attn_type))
519
+ up = nn.Module()
520
+ up.block = block
521
+ up.attn = attn
522
+ if i_level != 0:
523
+ up.upsample = Upsample(block_in, resamp_with_conv)
524
+ curr_res = curr_res * 2
525
+ self.up.insert(0, up) # prepend to get consistent order
526
+
527
+ # end
528
+ self.norm_out = Normalize(block_in)
529
+ self.conv_out = torch.nn.Conv2d(block_in,
530
+ out_ch,
531
+ kernel_size=3,
532
+ stride=1,
533
+ padding=1)
534
+
535
+ def forward(self, z):
536
+ #assert z.shape[1:] == self.z_shape[1:]
537
+ self.last_z_shape = z.shape
538
+
539
+ # timestep embedding
540
+ temb = None
541
+
542
+ # z to block_in
543
+ h = self.conv_in(z)
544
+
545
+ # middle
546
+ h = self.mid.block_1(h, temb)
547
+ h = self.mid.attn_1(h)
548
+ h = self.mid.block_2(h, temb)
549
+
550
+ # upsampling
551
+ for i_level in reversed(range(self.num_resolutions)):
552
+ for i_block in range(self.num_res_blocks+1):
553
+ h = self.up[i_level].block[i_block](h, temb)
554
+ if len(self.up[i_level].attn) > 0:
555
+ h = self.up[i_level].attn[i_block](h)
556
+ if i_level != 0:
557
+ h = self.up[i_level].upsample(h)
558
+
559
+ # end
560
+ if self.give_pre_end:
561
+ return h
562
+
563
+ h = self.norm_out(h)
564
+ h = nonlinearity(h)
565
+ h = self.conv_out(h)
566
+ if self.tanh_out:
567
+ h = torch.tanh(h)
568
+ return h
569
+
570
+
571
+ class SimpleDecoder(nn.Module):
572
+ def __init__(self, in_channels, out_channels, *args, **kwargs):
573
+ super().__init__()
574
+ self.model = nn.ModuleList([nn.Conv2d(in_channels, in_channels, 1),
575
+ ResnetBlock(in_channels=in_channels,
576
+ out_channels=2 * in_channels,
577
+ temb_channels=0, dropout=0.0),
578
+ ResnetBlock(in_channels=2 * in_channels,
579
+ out_channels=4 * in_channels,
580
+ temb_channels=0, dropout=0.0),
581
+ ResnetBlock(in_channels=4 * in_channels,
582
+ out_channels=2 * in_channels,
583
+ temb_channels=0, dropout=0.0),
584
+ nn.Conv2d(2*in_channels, in_channels, 1),
585
+ Upsample(in_channels, with_conv=True)])
586
+ # end
587
+ self.norm_out = Normalize(in_channels)
588
+ self.conv_out = torch.nn.Conv2d(in_channels,
589
+ out_channels,
590
+ kernel_size=3,
591
+ stride=1,
592
+ padding=1)
593
+
594
+ def forward(self, x):
595
+ for i, layer in enumerate(self.model):
596
+ if i in [1,2,3]:
597
+ x = layer(x, None)
598
+ else:
599
+ x = layer(x)
600
+
601
+ h = self.norm_out(x)
602
+ h = nonlinearity(h)
603
+ x = self.conv_out(h)
604
+ return x
605
+
606
+
607
+ class UpsampleDecoder(nn.Module):
608
+ def __init__(self, in_channels, out_channels, ch, num_res_blocks, resolution,
609
+ ch_mult=(2,2), dropout=0.0):
610
+ super().__init__()
611
+ # upsampling
612
+ self.temb_ch = 0
613
+ self.num_resolutions = len(ch_mult)
614
+ self.num_res_blocks = num_res_blocks
615
+ block_in = in_channels
616
+ curr_res = resolution // 2 ** (self.num_resolutions - 1)
617
+ self.res_blocks = nn.ModuleList()
618
+ self.upsample_blocks = nn.ModuleList()
619
+ for i_level in range(self.num_resolutions):
620
+ res_block = []
621
+ block_out = ch * ch_mult[i_level]
622
+ for i_block in range(self.num_res_blocks + 1):
623
+ res_block.append(ResnetBlock(in_channels=block_in,
624
+ out_channels=block_out,
625
+ temb_channels=self.temb_ch,
626
+ dropout=dropout))
627
+ block_in = block_out
628
+ self.res_blocks.append(nn.ModuleList(res_block))
629
+ if i_level != self.num_resolutions - 1:
630
+ self.upsample_blocks.append(Upsample(block_in, True))
631
+ curr_res = curr_res * 2
632
+
633
+ # end
634
+ self.norm_out = Normalize(block_in)
635
+ self.conv_out = torch.nn.Conv2d(block_in,
636
+ out_channels,
637
+ kernel_size=3,
638
+ stride=1,
639
+ padding=1)
640
+
641
+ def forward(self, x):
642
+ # upsampling
643
+ h = x
644
+ for k, i_level in enumerate(range(self.num_resolutions)):
645
+ for i_block in range(self.num_res_blocks + 1):
646
+ h = self.res_blocks[i_level][i_block](h, None)
647
+ if i_level != self.num_resolutions - 1:
648
+ h = self.upsample_blocks[k](h)
649
+ h = self.norm_out(h)
650
+ h = nonlinearity(h)
651
+ h = self.conv_out(h)
652
+ return h
653
+
654
+
655
+ class LatentRescaler(nn.Module):
656
+ def __init__(self, factor, in_channels, mid_channels, out_channels, depth=2):
657
+ super().__init__()
658
+ # residual block, interpolate, residual block
659
+ self.factor = factor
660
+ self.conv_in = nn.Conv2d(in_channels,
661
+ mid_channels,
662
+ kernel_size=3,
663
+ stride=1,
664
+ padding=1)
665
+ self.res_block1 = nn.ModuleList([ResnetBlock(in_channels=mid_channels,
666
+ out_channels=mid_channels,
667
+ temb_channels=0,
668
+ dropout=0.0) for _ in range(depth)])
669
+ self.attn = AttnBlock(mid_channels)
670
+ self.res_block2 = nn.ModuleList([ResnetBlock(in_channels=mid_channels,
671
+ out_channels=mid_channels,
672
+ temb_channels=0,
673
+ dropout=0.0) for _ in range(depth)])
674
+
675
+ self.conv_out = nn.Conv2d(mid_channels,
676
+ out_channels,
677
+ kernel_size=1,
678
+ )
679
+
680
+ def forward(self, x):
681
+ x = self.conv_in(x)
682
+ for block in self.res_block1:
683
+ x = block(x, None)
684
+ x = torch.nn.functional.interpolate(x, size=(int(round(x.shape[2]*self.factor)), int(round(x.shape[3]*self.factor))))
685
+ x = self.attn(x)
686
+ for block in self.res_block2:
687
+ x = block(x, None)
688
+ x = self.conv_out(x)
689
+ return x
690
+
691
+
692
+ class MergedRescaleEncoder(nn.Module):
693
+ def __init__(self, in_channels, ch, resolution, out_ch, num_res_blocks,
694
+ attn_resolutions, dropout=0.0, resamp_with_conv=True,
695
+ ch_mult=(1,2,4,8), rescale_factor=1.0, rescale_module_depth=1):
696
+ super().__init__()
697
+ intermediate_chn = ch * ch_mult[-1]
698
+ self.encoder = Encoder(in_channels=in_channels, num_res_blocks=num_res_blocks, ch=ch, ch_mult=ch_mult,
699
+ z_channels=intermediate_chn, double_z=False, resolution=resolution,
700
+ attn_resolutions=attn_resolutions, dropout=dropout, resamp_with_conv=resamp_with_conv,
701
+ out_ch=None)
702
+ self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=intermediate_chn,
703
+ mid_channels=intermediate_chn, out_channels=out_ch, depth=rescale_module_depth)
704
+
705
+ def forward(self, x):
706
+ x = self.encoder(x)
707
+ x = self.rescaler(x)
708
+ return x
709
+
710
+
711
+ class MergedRescaleDecoder(nn.Module):
712
+ def __init__(self, z_channels, out_ch, resolution, num_res_blocks, attn_resolutions, ch, ch_mult=(1,2,4,8),
713
+ dropout=0.0, resamp_with_conv=True, rescale_factor=1.0, rescale_module_depth=1):
714
+ super().__init__()
715
+ tmp_chn = z_channels*ch_mult[-1]
716
+ self.decoder = Decoder(out_ch=out_ch, z_channels=tmp_chn, attn_resolutions=attn_resolutions, dropout=dropout,
717
+ resamp_with_conv=resamp_with_conv, in_channels=None, num_res_blocks=num_res_blocks,
718
+ ch_mult=ch_mult, resolution=resolution, ch=ch)
719
+ self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=z_channels, mid_channels=tmp_chn,
720
+ out_channels=tmp_chn, depth=rescale_module_depth)
721
+
722
+ def forward(self, x):
723
+ x = self.rescaler(x)
724
+ x = self.decoder(x)
725
+ return x
726
+
727
+
728
+ class Upsampler(nn.Module):
729
+ def __init__(self, in_size, out_size, in_channels, out_channels, ch_mult=2):
730
+ super().__init__()
731
+ assert out_size >= in_size
732
+ num_blocks = int(np.log2(out_size//in_size))+1
733
+ factor_up = 1.+ (out_size % in_size)
734
+ print(f"Building {self.__class__.__name__} with in_size: {in_size} --> out_size {out_size} and factor {factor_up}")
735
+ self.rescaler = LatentRescaler(factor=factor_up, in_channels=in_channels, mid_channels=2*in_channels,
736
+ out_channels=in_channels)
737
+ self.decoder = Decoder(out_ch=out_channels, resolution=out_size, z_channels=in_channels, num_res_blocks=2,
738
+ attn_resolutions=[], in_channels=None, ch=in_channels,
739
+ ch_mult=[ch_mult for _ in range(num_blocks)])
740
+
741
+ def forward(self, x):
742
+ x = self.rescaler(x)
743
+ x = self.decoder(x)
744
+ return x
745
+
746
+
747
+ class Resize(nn.Module):
748
+ def __init__(self, in_channels=None, learned=False, mode="bilinear"):
749
+ super().__init__()
750
+ self.with_conv = learned
751
+ self.mode = mode
752
+ if self.with_conv:
753
+ print(f"Note: {self.__class__.__name} uses learned downsampling and will ignore the fixed {mode} mode")
754
+ raise NotImplementedError()
755
+ assert in_channels is not None
756
+ # no asymmetric padding in torch conv, must do it ourselves
757
+ self.conv = torch.nn.Conv2d(in_channels,
758
+ in_channels,
759
+ kernel_size=4,
760
+ stride=2,
761
+ padding=1)
762
+
763
+ def forward(self, x, scale_factor=1.0):
764
+ if scale_factor==1.0:
765
+ return x
766
+ else:
767
+ x = torch.nn.functional.interpolate(x, mode=self.mode, align_corners=False, scale_factor=scale_factor)
768
+ return x
769
+
770
+ class FirstStagePostProcessor(nn.Module):
771
+
772
+ def __init__(self, ch_mult:list, in_channels,
773
+ pretrained_model:nn.Module=None,
774
+ reshape=False,
775
+ n_channels=None,
776
+ dropout=0.,
777
+ pretrained_config=None):
778
+ super().__init__()
779
+ if pretrained_config is None:
780
+ assert pretrained_model is not None, 'Either "pretrained_model" or "pretrained_config" must not be None'
781
+ self.pretrained_model = pretrained_model
782
+ else:
783
+ assert pretrained_config is not None, 'Either "pretrained_model" or "pretrained_config" must not be None'
784
+ self.instantiate_pretrained(pretrained_config)
785
+
786
+ self.do_reshape = reshape
787
+
788
+ if n_channels is None:
789
+ n_channels = self.pretrained_model.encoder.ch
790
+
791
+ self.proj_norm = Normalize(in_channels,num_groups=in_channels//2)
792
+ self.proj = nn.Conv2d(in_channels,n_channels,kernel_size=3,
793
+ stride=1,padding=1)
794
+
795
+ blocks = []
796
+ downs = []
797
+ ch_in = n_channels
798
+ for m in ch_mult:
799
+ blocks.append(ResnetBlock(in_channels=ch_in,out_channels=m*n_channels,dropout=dropout))
800
+ ch_in = m * n_channels
801
+ downs.append(Downsample(ch_in, with_conv=False))
802
+
803
+ self.model = nn.ModuleList(blocks)
804
+ self.downsampler = nn.ModuleList(downs)
805
+
806
+
807
+ def instantiate_pretrained(self, config):
808
+ model = instantiate_from_config(config)
809
+ self.pretrained_model = model.eval()
810
+ # self.pretrained_model.train = False
811
+ for param in self.pretrained_model.parameters():
812
+ param.requires_grad = False
813
+
814
+
815
+ @torch.no_grad()
816
+ def encode_with_pretrained(self,x):
817
+ c = self.pretrained_model.encode(x)
818
+ if isinstance(c, DiagonalGaussianDistribution):
819
+ c = c.mode()
820
+ return c
821
+
822
+ def forward(self,x):
823
+ z_fs = self.encode_with_pretrained(x)
824
+ z = self.proj_norm(z_fs)
825
+ z = self.proj(z)
826
+ z = nonlinearity(z)
827
+
828
+ for submodel, downmodel in zip(self.model,self.downsampler):
829
+ z = submodel(z,temb=None)
830
+ z = downmodel(z)
831
+
832
+ if self.do_reshape:
833
+ z = rearrange(z,'b c h w -> b (h w) c')
834
+ return z
835
+
ldm/modules/diffusionmodules/openaimodel.py ADDED
@@ -0,0 +1,996 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from abc import abstractmethod
2
+ from functools import partial
3
+ import math
4
+ from typing import Iterable
5
+
6
+ import numpy as np
7
+ import torch as th
8
+ import torch.nn as nn
9
+ import torch.nn.functional as F
10
+
11
+ from ldm.modules.diffusionmodules.util import (
12
+ checkpoint,
13
+ conv_nd,
14
+ linear,
15
+ avg_pool_nd,
16
+ zero_module,
17
+ normalization,
18
+ timestep_embedding,
19
+ )
20
+ from ldm.modules.attention import SpatialTransformer
21
+ from ldm.util import exists
22
+
23
+
24
+ # dummy replace
25
+ def convert_module_to_f16(x):
26
+ pass
27
+
28
+ def convert_module_to_f32(x):
29
+ pass
30
+
31
+
32
+ ## go
33
+ class AttentionPool2d(nn.Module):
34
+ """
35
+ Adapted from CLIP: https://github.com/openai/CLIP/blob/main/clip/model.py
36
+ """
37
+
38
+ def __init__(
39
+ self,
40
+ spacial_dim: int,
41
+ embed_dim: int,
42
+ num_heads_channels: int,
43
+ output_dim: int = None,
44
+ ):
45
+ super().__init__()
46
+ self.positional_embedding = nn.Parameter(th.randn(embed_dim, spacial_dim ** 2 + 1) / embed_dim ** 0.5)
47
+ self.qkv_proj = conv_nd(1, embed_dim, 3 * embed_dim, 1)
48
+ self.c_proj = conv_nd(1, embed_dim, output_dim or embed_dim, 1)
49
+ self.num_heads = embed_dim // num_heads_channels
50
+ self.attention = QKVAttention(self.num_heads)
51
+
52
+ def forward(self, x):
53
+ b, c, *_spatial = x.shape
54
+ x = x.reshape(b, c, -1) # NC(HW)
55
+ x = th.cat([x.mean(dim=-1, keepdim=True), x], dim=-1) # NC(HW+1)
56
+ x = x + self.positional_embedding[None, :, :].to(x.dtype) # NC(HW+1)
57
+ x = self.qkv_proj(x)
58
+ x = self.attention(x)
59
+ x = self.c_proj(x)
60
+ return x[:, :, 0]
61
+
62
+
63
+ class TimestepBlock(nn.Module):
64
+ """
65
+ Any module where forward() takes timestep embeddings as a second argument.
66
+ """
67
+
68
+ @abstractmethod
69
+ def forward(self, x, emb):
70
+ """
71
+ Apply the module to `x` given `emb` timestep embeddings.
72
+ """
73
+
74
+
75
+ class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
76
+ """
77
+ A sequential module that passes timestep embeddings to the children that
78
+ support it as an extra input.
79
+ """
80
+
81
+ def forward(self, x, emb, context=None):
82
+ for layer in self:
83
+ if isinstance(layer, TimestepBlock):
84
+ x = layer(x, emb)
85
+ elif isinstance(layer, SpatialTransformer):
86
+ x = layer(x, context)
87
+ else:
88
+ x = layer(x)
89
+ return x
90
+
91
+
92
+ class Upsample(nn.Module):
93
+ """
94
+ An upsampling layer with an optional convolution.
95
+ :param channels: channels in the inputs and outputs.
96
+ :param use_conv: a bool determining if a convolution is applied.
97
+ :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
98
+ upsampling occurs in the inner-two dimensions.
99
+ """
100
+
101
+ def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
102
+ super().__init__()
103
+ self.channels = channels
104
+ self.out_channels = out_channels or channels
105
+ self.use_conv = use_conv
106
+ self.dims = dims
107
+ if use_conv:
108
+ self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=padding)
109
+
110
+ def forward(self, x):
111
+ assert x.shape[1] == self.channels
112
+ if self.dims == 3:
113
+ x = F.interpolate(
114
+ x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest"
115
+ )
116
+ else:
117
+ x = F.interpolate(x, scale_factor=2, mode="nearest")
118
+ if self.use_conv:
119
+ x = self.conv(x)
120
+ return x
121
+
122
+ class TransposedUpsample(nn.Module):
123
+ 'Learned 2x upsampling without padding'
124
+ def __init__(self, channels, out_channels=None, ks=5):
125
+ super().__init__()
126
+ self.channels = channels
127
+ self.out_channels = out_channels or channels
128
+
129
+ self.up = nn.ConvTranspose2d(self.channels,self.out_channels,kernel_size=ks,stride=2)
130
+
131
+ def forward(self,x):
132
+ return self.up(x)
133
+
134
+
135
+ class Downsample(nn.Module):
136
+ """
137
+ A downsampling layer with an optional convolution.
138
+ :param channels: channels in the inputs and outputs.
139
+ :param use_conv: a bool determining if a convolution is applied.
140
+ :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
141
+ downsampling occurs in the inner-two dimensions.
142
+ """
143
+
144
+ def __init__(self, channels, use_conv, dims=2, out_channels=None,padding=1):
145
+ super().__init__()
146
+ self.channels = channels
147
+ self.out_channels = out_channels or channels
148
+ self.use_conv = use_conv
149
+ self.dims = dims
150
+ stride = 2 if dims != 3 else (1, 2, 2)
151
+ if use_conv:
152
+ self.op = conv_nd(
153
+ dims, self.channels, self.out_channels, 3, stride=stride, padding=padding
154
+ )
155
+ else:
156
+ assert self.channels == self.out_channels
157
+ self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
158
+
159
+ def forward(self, x):
160
+ assert x.shape[1] == self.channels
161
+ return self.op(x)
162
+
163
+
164
+ class ResBlock(TimestepBlock):
165
+ """
166
+ A residual block that can optionally change the number of channels.
167
+ :param channels: the number of input channels.
168
+ :param emb_channels: the number of timestep embedding channels.
169
+ :param dropout: the rate of dropout.
170
+ :param out_channels: if specified, the number of out channels.
171
+ :param use_conv: if True and out_channels is specified, use a spatial
172
+ convolution instead of a smaller 1x1 convolution to change the
173
+ channels in the skip connection.
174
+ :param dims: determines if the signal is 1D, 2D, or 3D.
175
+ :param use_checkpoint: if True, use gradient checkpointing on this module.
176
+ :param up: if True, use this block for upsampling.
177
+ :param down: if True, use this block for downsampling.
178
+ """
179
+
180
+ def __init__(
181
+ self,
182
+ channels,
183
+ emb_channels,
184
+ dropout,
185
+ out_channels=None,
186
+ use_conv=False,
187
+ use_scale_shift_norm=False,
188
+ dims=2,
189
+ use_checkpoint=False,
190
+ up=False,
191
+ down=False,
192
+ ):
193
+ super().__init__()
194
+ self.channels = channels
195
+ self.emb_channels = emb_channels
196
+ self.dropout = dropout
197
+ self.out_channels = out_channels or channels
198
+ self.use_conv = use_conv
199
+ self.use_checkpoint = use_checkpoint
200
+ self.use_scale_shift_norm = use_scale_shift_norm
201
+
202
+ self.in_layers = nn.Sequential(
203
+ normalization(channels),
204
+ nn.SiLU(),
205
+ conv_nd(dims, channels, self.out_channels, 3, padding=1),
206
+ )
207
+
208
+ self.updown = up or down
209
+
210
+ if up:
211
+ self.h_upd = Upsample(channels, False, dims)
212
+ self.x_upd = Upsample(channels, False, dims)
213
+ elif down:
214
+ self.h_upd = Downsample(channels, False, dims)
215
+ self.x_upd = Downsample(channels, False, dims)
216
+ else:
217
+ self.h_upd = self.x_upd = nn.Identity()
218
+
219
+ self.emb_layers = nn.Sequential(
220
+ nn.SiLU(),
221
+ linear(
222
+ emb_channels,
223
+ 2 * self.out_channels if use_scale_shift_norm else self.out_channels,
224
+ ),
225
+ )
226
+ self.out_layers = nn.Sequential(
227
+ normalization(self.out_channels),
228
+ nn.SiLU(),
229
+ nn.Dropout(p=dropout),
230
+ zero_module(
231
+ conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1)
232
+ ),
233
+ )
234
+
235
+ if self.out_channels == channels:
236
+ self.skip_connection = nn.Identity()
237
+ elif use_conv:
238
+ self.skip_connection = conv_nd(
239
+ dims, channels, self.out_channels, 3, padding=1
240
+ )
241
+ else:
242
+ self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
243
+
244
+ def forward(self, x, emb):
245
+ """
246
+ Apply the block to a Tensor, conditioned on a timestep embedding.
247
+ :param x: an [N x C x ...] Tensor of features.
248
+ :param emb: an [N x emb_channels] Tensor of timestep embeddings.
249
+ :return: an [N x C x ...] Tensor of outputs.
250
+ """
251
+ return checkpoint(
252
+ self._forward, (x, emb), self.parameters(), self.use_checkpoint
253
+ )
254
+
255
+
256
+ def _forward(self, x, emb):
257
+ if self.updown:
258
+ in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
259
+ h = in_rest(x)
260
+ h = self.h_upd(h)
261
+ x = self.x_upd(x)
262
+ h = in_conv(h)
263
+ else:
264
+ h = self.in_layers(x)
265
+ emb_out = self.emb_layers(emb).type(h.dtype)
266
+ while len(emb_out.shape) < len(h.shape):
267
+ emb_out = emb_out[..., None]
268
+ if self.use_scale_shift_norm: # False
269
+ out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
270
+ scale, shift = th.chunk(emb_out, 2, dim=1)
271
+ h = out_norm(h) * (1 + scale) + shift
272
+ h = out_rest(h)
273
+ else:
274
+ h = h + emb_out
275
+ h = self.out_layers(h)
276
+ return self.skip_connection(x) + h
277
+
278
+
279
+ class AttentionBlock(nn.Module):
280
+ """
281
+ An attention block that allows spatial positions to attend to each other.
282
+ Originally ported from here, but adapted to the N-d case.
283
+ https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
284
+ """
285
+
286
+ def __init__(
287
+ self,
288
+ channels,
289
+ num_heads=1,
290
+ num_head_channels=-1,
291
+ use_checkpoint=False,
292
+ use_new_attention_order=False,
293
+ ):
294
+ super().__init__()
295
+ self.channels = channels
296
+ if num_head_channels == -1:
297
+ self.num_heads = num_heads
298
+ else:
299
+ assert (
300
+ channels % num_head_channels == 0
301
+ ), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
302
+ self.num_heads = channels // num_head_channels
303
+ self.use_checkpoint = use_checkpoint
304
+ self.norm = normalization(channels)
305
+ self.qkv = conv_nd(1, channels, channels * 3, 1)
306
+ if use_new_attention_order:
307
+ # split qkv before split heads
308
+ self.attention = QKVAttention(self.num_heads)
309
+ else:
310
+ # split heads before split qkv
311
+ self.attention = QKVAttentionLegacy(self.num_heads)
312
+
313
+ self.proj_out = zero_module(conv_nd(1, channels, channels, 1))
314
+
315
+ def forward(self, x):
316
+ return checkpoint(self._forward, (x,), self.parameters(), True) # TODO: check checkpoint usage, is True # TODO: fix the .half call!!!
317
+ #return pt_checkpoint(self._forward, x) # pytorch
318
+
319
+ def _forward(self, x):
320
+ b, c, *spatial = x.shape
321
+ x = x.reshape(b, c, -1)
322
+ qkv = self.qkv(self.norm(x))
323
+ h = self.attention(qkv)
324
+ h = self.proj_out(h)
325
+ return (x + h).reshape(b, c, *spatial)
326
+
327
+
328
+ def count_flops_attn(model, _x, y):
329
+ """
330
+ A counter for the `thop` package to count the operations in an
331
+ attention operation.
332
+ Meant to be used like:
333
+ macs, params = thop.profile(
334
+ model,
335
+ inputs=(inputs, timestamps),
336
+ custom_ops={QKVAttention: QKVAttention.count_flops},
337
+ )
338
+ """
339
+ b, c, *spatial = y[0].shape
340
+ num_spatial = int(np.prod(spatial))
341
+ # We perform two matmuls with the same number of ops.
342
+ # The first computes the weight matrix, the second computes
343
+ # the combination of the value vectors.
344
+ matmul_ops = 2 * b * (num_spatial ** 2) * c
345
+ model.total_ops += th.DoubleTensor([matmul_ops])
346
+
347
+
348
+ class QKVAttentionLegacy(nn.Module):
349
+ """
350
+ A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping
351
+ """
352
+
353
+ def __init__(self, n_heads):
354
+ super().__init__()
355
+ self.n_heads = n_heads
356
+
357
+ def forward(self, qkv):
358
+ """
359
+ Apply QKV attention.
360
+ :param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs.
361
+ :return: an [N x (H * C) x T] tensor after attention.
362
+ """
363
+ bs, width, length = qkv.shape
364
+ assert width % (3 * self.n_heads) == 0
365
+ ch = width // (3 * self.n_heads)
366
+ q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1)
367
+ scale = 1 / math.sqrt(math.sqrt(ch))
368
+ weight = th.einsum(
369
+ "bct,bcs->bts", q * scale, k * scale
370
+ ) # More stable with f16 than dividing afterwards
371
+ weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
372
+ a = th.einsum("bts,bcs->bct", weight, v)
373
+ return a.reshape(bs, -1, length)
374
+
375
+ @staticmethod
376
+ def count_flops(model, _x, y):
377
+ return count_flops_attn(model, _x, y)
378
+
379
+
380
+ class QKVAttention(nn.Module):
381
+ """
382
+ A module which performs QKV attention and splits in a different order.
383
+ """
384
+
385
+ def __init__(self, n_heads):
386
+ super().__init__()
387
+ self.n_heads = n_heads
388
+
389
+ def forward(self, qkv):
390
+ """
391
+ Apply QKV attention.
392
+ :param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs.
393
+ :return: an [N x (H * C) x T] tensor after attention.
394
+ """
395
+ bs, width, length = qkv.shape
396
+ assert width % (3 * self.n_heads) == 0
397
+ ch = width // (3 * self.n_heads)
398
+ q, k, v = qkv.chunk(3, dim=1)
399
+ scale = 1 / math.sqrt(math.sqrt(ch))
400
+ weight = th.einsum(
401
+ "bct,bcs->bts",
402
+ (q * scale).view(bs * self.n_heads, ch, length),
403
+ (k * scale).view(bs * self.n_heads, ch, length),
404
+ ) # More stable with f16 than dividing afterwards
405
+ weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
406
+ a = th.einsum("bts,bcs->bct", weight, v.reshape(bs * self.n_heads, ch, length))
407
+ return a.reshape(bs, -1, length)
408
+
409
+ @staticmethod
410
+ def count_flops(model, _x, y):
411
+ return count_flops_attn(model, _x, y)
412
+
413
+
414
+ class UNetModel(nn.Module):
415
+ """
416
+ The full UNet model with attention and timestep embedding.
417
+ :param in_channels: channels in the input Tensor.
418
+ :param model_channels: base channel count for the model.
419
+ :param out_channels: channels in the output Tensor.
420
+ :param num_res_blocks: number of residual blocks per downsample.
421
+ :param attention_resolutions: a collection of downsample rates at which
422
+ attention will take place. May be a set, list, or tuple.
423
+ For example, if this contains 4, then at 4x downsampling, attention
424
+ will be used.
425
+ :param dropout: the dropout probability.
426
+ :param channel_mult: channel multiplier for each level of the UNet.
427
+ :param conv_resample: if True, use learned convolutions for upsampling and
428
+ downsampling.
429
+ :param dims: determines if the signal is 1D, 2D, or 3D.
430
+ :param num_classes: if specified (as an int), then this model will be
431
+ class-conditional with `num_classes` classes.
432
+ :param use_checkpoint: use gradient checkpointing to reduce memory usage.
433
+ :param num_heads: the number of attention heads in each attention layer.
434
+ :param num_heads_channels: if specified, ignore num_heads and instead use
435
+ a fixed channel width per attention head.
436
+ :param num_heads_upsample: works with num_heads to set a different number
437
+ of heads for upsampling. Deprecated.
438
+ :param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
439
+ :param resblock_updown: use residual blocks for up/downsampling.
440
+ :param use_new_attention_order: use a different attention pattern for potentially
441
+ increased efficiency.
442
+ """
443
+
444
+ def __init__(
445
+ self,
446
+ image_size,
447
+ in_channels,
448
+ model_channels,
449
+ out_channels,
450
+ num_res_blocks,
451
+ attention_resolutions,
452
+ dropout=0,
453
+ channel_mult=(1, 2, 4, 8),
454
+ conv_resample=True,
455
+ dims=2,
456
+ num_classes=None,
457
+ use_checkpoint=False,
458
+ use_fp16=False,
459
+ num_heads=-1,
460
+ num_head_channels=-1,
461
+ num_heads_upsample=-1,
462
+ use_scale_shift_norm=False,
463
+ resblock_updown=False,
464
+ use_new_attention_order=False,
465
+ use_spatial_transformer=False, # custom transformer support
466
+ transformer_depth=1, # custom transformer support
467
+ context_dim=None, # custom transformer support
468
+ n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
469
+ legacy=True,
470
+ disable_self_attentions=None,
471
+ num_attention_blocks=None
472
+ ):
473
+ super().__init__()
474
+ if use_spatial_transformer:
475
+ assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'
476
+
477
+ if context_dim is not None:
478
+ assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
479
+ from omegaconf.listconfig import ListConfig
480
+ if type(context_dim) == ListConfig:
481
+ context_dim = list(context_dim)
482
+
483
+ if num_heads_upsample == -1:
484
+ num_heads_upsample = num_heads
485
+
486
+ if num_heads == -1:
487
+ assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
488
+
489
+ if num_head_channels == -1:
490
+ assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
491
+
492
+ self.image_size = image_size
493
+ self.in_channels = in_channels
494
+ self.model_channels = model_channels
495
+ self.out_channels = out_channels
496
+ if isinstance(num_res_blocks, int):
497
+ self.num_res_blocks = len(channel_mult) * [num_res_blocks]
498
+ else:
499
+ if len(num_res_blocks) != len(channel_mult):
500
+ raise ValueError("provide num_res_blocks either as an int (globally constant) or "
501
+ "as a list/tuple (per-level) with the same length as channel_mult")
502
+ self.num_res_blocks = num_res_blocks
503
+ #self.num_res_blocks = num_res_blocks
504
+ if disable_self_attentions is not None:
505
+ # should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
506
+ assert len(disable_self_attentions) == len(channel_mult)
507
+ if num_attention_blocks is not None:
508
+ assert len(num_attention_blocks) == len(self.num_res_blocks)
509
+ assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks))))
510
+ print(f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. "
511
+ f"This option has LESS priority than attention_resolutions {attention_resolutions}, "
512
+ f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, "
513
+ f"attention will still not be set.") # todo: convert to warning
514
+
515
+ self.attention_resolutions = attention_resolutions
516
+ self.dropout = dropout
517
+ self.channel_mult = channel_mult
518
+ self.conv_resample = conv_resample
519
+ self.num_classes = num_classes
520
+ self.use_checkpoint = use_checkpoint
521
+ self.dtype = th.float16 if use_fp16 else th.float32
522
+ self.num_heads = num_heads
523
+ self.num_head_channels = num_head_channels
524
+ self.num_heads_upsample = num_heads_upsample
525
+ self.predict_codebook_ids = n_embed is not None
526
+
527
+ time_embed_dim = model_channels * 4
528
+ self.time_embed = nn.Sequential(
529
+ linear(model_channels, time_embed_dim),
530
+ nn.SiLU(),
531
+ linear(time_embed_dim, time_embed_dim),
532
+ )
533
+
534
+ if self.num_classes is not None:
535
+ self.label_emb = nn.Embedding(num_classes, time_embed_dim)
536
+
537
+ self.input_blocks = nn.ModuleList(
538
+ [
539
+ TimestepEmbedSequential(
540
+ conv_nd(dims, in_channels, model_channels, 3, padding=1)
541
+ )
542
+ ]
543
+ ) # 0
544
+ self._feature_size = model_channels
545
+ input_block_chans = [model_channels]
546
+ ch = model_channels
547
+ ds = 1
548
+ for level, mult in enumerate(channel_mult):
549
+ for nr in range(self.num_res_blocks[level]):
550
+ layers = [
551
+ ResBlock(
552
+ ch,
553
+ time_embed_dim,
554
+ dropout,
555
+ out_channels=mult * model_channels,
556
+ dims=dims,
557
+ use_checkpoint=use_checkpoint,
558
+ use_scale_shift_norm=use_scale_shift_norm,
559
+ )
560
+ ]
561
+ ch = mult * model_channels
562
+ if ds in attention_resolutions: # always True
563
+ if num_head_channels == -1:
564
+ dim_head = ch // num_heads
565
+ else:
566
+ num_heads = ch // num_head_channels
567
+ dim_head = num_head_channels
568
+ if legacy:
569
+ #num_heads = 1
570
+ dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
571
+ if exists(disable_self_attentions):
572
+ disabled_sa = disable_self_attentions[level]
573
+ else:
574
+ disabled_sa = False
575
+
576
+ if not exists(num_attention_blocks) or nr < num_attention_blocks[level]:
577
+ layers.append(
578
+ AttentionBlock(
579
+ ch,
580
+ use_checkpoint=use_checkpoint,
581
+ num_heads=num_heads,
582
+ num_head_channels=dim_head,
583
+ use_new_attention_order=use_new_attention_order,
584
+ ) if not use_spatial_transformer else SpatialTransformer(
585
+ ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
586
+ disable_self_attn=disabled_sa
587
+ )
588
+ )
589
+ self.input_blocks.append(TimestepEmbedSequential(*layers))
590
+ self._feature_size += ch
591
+ input_block_chans.append(ch)
592
+ if level != len(channel_mult) - 1:
593
+ out_ch = ch
594
+ self.input_blocks.append(
595
+ TimestepEmbedSequential(
596
+ ResBlock(
597
+ ch,
598
+ time_embed_dim,
599
+ dropout,
600
+ out_channels=out_ch,
601
+ dims=dims,
602
+ use_checkpoint=use_checkpoint,
603
+ use_scale_shift_norm=use_scale_shift_norm,
604
+ down=True,
605
+ )
606
+ if resblock_updown
607
+ else Downsample(
608
+ ch, conv_resample, dims=dims, out_channels=out_ch
609
+ )
610
+ )
611
+ )
612
+ ch = out_ch
613
+ input_block_chans.append(ch)
614
+ ds *= 2
615
+ self._feature_size += ch
616
+
617
+ if num_head_channels == -1:
618
+ dim_head = ch // num_heads
619
+ else:
620
+ num_heads = ch // num_head_channels
621
+ dim_head = num_head_channels
622
+ if legacy:
623
+ #num_heads = 1
624
+ dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
625
+ self.middle_block = TimestepEmbedSequential(
626
+ ResBlock(
627
+ ch,
628
+ time_embed_dim,
629
+ dropout,
630
+ dims=dims,
631
+ use_checkpoint=use_checkpoint,
632
+ use_scale_shift_norm=use_scale_shift_norm,
633
+ ),
634
+ AttentionBlock(
635
+ ch,
636
+ use_checkpoint=use_checkpoint,
637
+ num_heads=num_heads,
638
+ num_head_channels=dim_head,
639
+ use_new_attention_order=use_new_attention_order,
640
+ ) if not use_spatial_transformer else SpatialTransformer( # always uses a self-attn
641
+ ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim
642
+ ),
643
+ ResBlock(
644
+ ch,
645
+ time_embed_dim,
646
+ dropout,
647
+ dims=dims,
648
+ use_checkpoint=use_checkpoint,
649
+ use_scale_shift_norm=use_scale_shift_norm,
650
+ ),
651
+ )
652
+ self._feature_size += ch
653
+
654
+ self.output_blocks = nn.ModuleList([])
655
+ for level, mult in list(enumerate(channel_mult))[::-1]:
656
+ for i in range(self.num_res_blocks[level] + 1):
657
+ ich = input_block_chans.pop()
658
+ layers = [
659
+ ResBlock(
660
+ ch + ich,
661
+ time_embed_dim,
662
+ dropout,
663
+ out_channels=model_channels * mult,
664
+ dims=dims,
665
+ use_checkpoint=use_checkpoint,
666
+ use_scale_shift_norm=use_scale_shift_norm,
667
+ )
668
+ ]
669
+ ch = model_channels * mult
670
+ if ds in attention_resolutions:
671
+ if num_head_channels == -1:
672
+ dim_head = ch // num_heads
673
+ else:
674
+ num_heads = ch // num_head_channels
675
+ dim_head = num_head_channels
676
+ if legacy:
677
+ #num_heads = 1
678
+ dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
679
+ if exists(disable_self_attentions):
680
+ disabled_sa = disable_self_attentions[level]
681
+ else:
682
+ disabled_sa = False
683
+
684
+ if not exists(num_attention_blocks) or i < num_attention_blocks[level]:
685
+ layers.append(
686
+ AttentionBlock(
687
+ ch,
688
+ use_checkpoint=use_checkpoint,
689
+ num_heads=num_heads_upsample,
690
+ num_head_channels=dim_head,
691
+ use_new_attention_order=use_new_attention_order,
692
+ ) if not use_spatial_transformer else SpatialTransformer(
693
+ ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
694
+ disable_self_attn=disabled_sa
695
+ )
696
+ )
697
+ if level and i == self.num_res_blocks[level]:
698
+ out_ch = ch
699
+ layers.append(
700
+ ResBlock(
701
+ ch,
702
+ time_embed_dim,
703
+ dropout,
704
+ out_channels=out_ch,
705
+ dims=dims,
706
+ use_checkpoint=use_checkpoint,
707
+ use_scale_shift_norm=use_scale_shift_norm,
708
+ up=True,
709
+ )
710
+ if resblock_updown
711
+ else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
712
+ )
713
+ ds //= 2
714
+ self.output_blocks.append(TimestepEmbedSequential(*layers))
715
+ self._feature_size += ch
716
+
717
+ self.out = nn.Sequential(
718
+ normalization(ch),
719
+ nn.SiLU(),
720
+ zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
721
+ )
722
+ if self.predict_codebook_ids:
723
+ self.id_predictor = nn.Sequential(
724
+ normalization(ch),
725
+ conv_nd(dims, model_channels, n_embed, 1),
726
+ #nn.LogSoftmax(dim=1) # change to cross_entropy and produce non-normalized logits
727
+ )
728
+
729
+ def convert_to_fp16(self):
730
+ """
731
+ Convert the torso of the model to float16.
732
+ """
733
+ self.input_blocks.apply(convert_module_to_f16)
734
+ self.middle_block.apply(convert_module_to_f16)
735
+ self.output_blocks.apply(convert_module_to_f16)
736
+
737
+ def convert_to_fp32(self):
738
+ """
739
+ Convert the torso of the model to float32.
740
+ """
741
+ self.input_blocks.apply(convert_module_to_f32)
742
+ self.middle_block.apply(convert_module_to_f32)
743
+ self.output_blocks.apply(convert_module_to_f32)
744
+
745
+ def forward(self, x, timesteps=None, context=None, y=None,**kwargs):
746
+ """
747
+ Apply the model to an input batch.
748
+ :param x: an [N x C x ...] Tensor of inputs.
749
+ :param timesteps: a 1-D batch of timesteps.
750
+ :param context: conditioning plugged in via crossattn
751
+ :param y: an [N] Tensor of labels, if class-conditional.
752
+ :return: an [N x C x ...] Tensor of outputs.
753
+ """
754
+ assert (y is not None) == (
755
+ self.num_classes is not None
756
+ ), "must specify y if and only if the model is class-conditional"
757
+ hs = []
758
+ t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False) # N
759
+ emb = self.time_embed(t_emb) #
760
+
761
+ if self.num_classes is not None:
762
+ assert y.shape == (x.shape[0],)
763
+ emb = emb + self.label_emb(y)
764
+
765
+ h = x.type(self.dtype)
766
+ for module in self.input_blocks:
767
+ h = module(h, emb, context) # conv
768
+ hs.append(h)
769
+ h = self.middle_block(h, emb, context)
770
+ for module in self.output_blocks:
771
+ h = th.cat([h, hs.pop()], dim=1)
772
+ h = module(h, emb, context)
773
+ h = h.type(x.dtype)
774
+ if self.predict_codebook_ids:
775
+ return self.id_predictor(h)
776
+ else:
777
+ return self.out(h)
778
+
779
+
780
+ class EncoderUNetModel(nn.Module):
781
+ """
782
+ The half UNet model with attention and timestep embedding.
783
+ For usage, see UNet.
784
+ """
785
+
786
+ def __init__(
787
+ self,
788
+ image_size,
789
+ in_channels,
790
+ model_channels,
791
+ out_channels,
792
+ num_res_blocks,
793
+ attention_resolutions,
794
+ dropout=0,
795
+ channel_mult=(1, 2, 4, 8),
796
+ conv_resample=True,
797
+ dims=2,
798
+ use_checkpoint=False,
799
+ use_fp16=False,
800
+ num_heads=1,
801
+ num_head_channels=-1,
802
+ num_heads_upsample=-1,
803
+ use_scale_shift_norm=False,
804
+ resblock_updown=False,
805
+ use_new_attention_order=False,
806
+ pool="adaptive",
807
+ *args,
808
+ **kwargs
809
+ ):
810
+ super().__init__()
811
+
812
+ if num_heads_upsample == -1:
813
+ num_heads_upsample = num_heads
814
+
815
+ self.in_channels = in_channels
816
+ self.model_channels = model_channels
817
+ self.out_channels = out_channels
818
+ self.num_res_blocks = num_res_blocks
819
+ self.attention_resolutions = attention_resolutions
820
+ self.dropout = dropout
821
+ self.channel_mult = channel_mult
822
+ self.conv_resample = conv_resample
823
+ self.use_checkpoint = use_checkpoint
824
+ self.dtype = th.float16 if use_fp16 else th.float32
825
+ self.num_heads = num_heads
826
+ self.num_head_channels = num_head_channels
827
+ self.num_heads_upsample = num_heads_upsample
828
+
829
+ time_embed_dim = model_channels * 4
830
+ self.time_embed = nn.Sequential(
831
+ linear(model_channels, time_embed_dim),
832
+ nn.SiLU(),
833
+ linear(time_embed_dim, time_embed_dim),
834
+ )
835
+
836
+ self.input_blocks = nn.ModuleList(
837
+ [
838
+ TimestepEmbedSequential(
839
+ conv_nd(dims, in_channels, model_channels, 3, padding=1)
840
+ )
841
+ ]
842
+ )
843
+ self._feature_size = model_channels
844
+ input_block_chans = [model_channels]
845
+ ch = model_channels
846
+ ds = 1
847
+ for level, mult in enumerate(channel_mult):
848
+ for _ in range(num_res_blocks):
849
+ layers = [
850
+ ResBlock(
851
+ ch,
852
+ time_embed_dim,
853
+ dropout,
854
+ out_channels=mult * model_channels,
855
+ dims=dims,
856
+ use_checkpoint=use_checkpoint,
857
+ use_scale_shift_norm=use_scale_shift_norm,
858
+ )
859
+ ]
860
+ ch = mult * model_channels
861
+ if ds in attention_resolutions:
862
+ layers.append(
863
+ AttentionBlock(
864
+ ch,
865
+ use_checkpoint=use_checkpoint,
866
+ num_heads=num_heads,
867
+ num_head_channels=num_head_channels,
868
+ use_new_attention_order=use_new_attention_order,
869
+ )
870
+ )
871
+ self.input_blocks.append(TimestepEmbedSequential(*layers))
872
+ self._feature_size += ch
873
+ input_block_chans.append(ch)
874
+ if level != len(channel_mult) - 1:
875
+ out_ch = ch
876
+ self.input_blocks.append(
877
+ TimestepEmbedSequential(
878
+ ResBlock(
879
+ ch,
880
+ time_embed_dim,
881
+ dropout,
882
+ out_channels=out_ch,
883
+ dims=dims,
884
+ use_checkpoint=use_checkpoint,
885
+ use_scale_shift_norm=use_scale_shift_norm,
886
+ down=True,
887
+ )
888
+ if resblock_updown
889
+ else Downsample(
890
+ ch, conv_resample, dims=dims, out_channels=out_ch
891
+ )
892
+ )
893
+ )
894
+ ch = out_ch
895
+ input_block_chans.append(ch)
896
+ ds *= 2
897
+ self._feature_size += ch
898
+
899
+ self.middle_block = TimestepEmbedSequential(
900
+ ResBlock(
901
+ ch,
902
+ time_embed_dim,
903
+ dropout,
904
+ dims=dims,
905
+ use_checkpoint=use_checkpoint,
906
+ use_scale_shift_norm=use_scale_shift_norm,
907
+ ),
908
+ AttentionBlock(
909
+ ch,
910
+ use_checkpoint=use_checkpoint,
911
+ num_heads=num_heads,
912
+ num_head_channels=num_head_channels,
913
+ use_new_attention_order=use_new_attention_order,
914
+ ),
915
+ ResBlock(
916
+ ch,
917
+ time_embed_dim,
918
+ dropout,
919
+ dims=dims,
920
+ use_checkpoint=use_checkpoint,
921
+ use_scale_shift_norm=use_scale_shift_norm,
922
+ ),
923
+ )
924
+ self._feature_size += ch
925
+ self.pool = pool
926
+ if pool == "adaptive":
927
+ self.out = nn.Sequential(
928
+ normalization(ch),
929
+ nn.SiLU(),
930
+ nn.AdaptiveAvgPool2d((1, 1)),
931
+ zero_module(conv_nd(dims, ch, out_channels, 1)),
932
+ nn.Flatten(),
933
+ )
934
+ elif pool == "attention":
935
+ assert num_head_channels != -1
936
+ self.out = nn.Sequential(
937
+ normalization(ch),
938
+ nn.SiLU(),
939
+ AttentionPool2d(
940
+ (image_size // ds), ch, num_head_channels, out_channels
941
+ ),
942
+ )
943
+ elif pool == "spatial":
944
+ self.out = nn.Sequential(
945
+ nn.Linear(self._feature_size, 2048),
946
+ nn.ReLU(),
947
+ nn.Linear(2048, self.out_channels),
948
+ )
949
+ elif pool == "spatial_v2":
950
+ self.out = nn.Sequential(
951
+ nn.Linear(self._feature_size, 2048),
952
+ normalization(2048),
953
+ nn.SiLU(),
954
+ nn.Linear(2048, self.out_channels),
955
+ )
956
+ else:
957
+ raise NotImplementedError(f"Unexpected {pool} pooling")
958
+
959
+ def convert_to_fp16(self):
960
+ """
961
+ Convert the torso of the model to float16.
962
+ """
963
+ self.input_blocks.apply(convert_module_to_f16)
964
+ self.middle_block.apply(convert_module_to_f16)
965
+
966
+ def convert_to_fp32(self):
967
+ """
968
+ Convert the torso of the model to float32.
969
+ """
970
+ self.input_blocks.apply(convert_module_to_f32)
971
+ self.middle_block.apply(convert_module_to_f32)
972
+
973
+ def forward(self, x, timesteps):
974
+ """
975
+ Apply the model to an input batch.
976
+ :param x: an [N x C x ...] Tensor of inputs.
977
+ :param timesteps: a 1-D batch of timesteps.
978
+ :return: an [N x K] Tensor of outputs.
979
+ """
980
+ emb = self.time_embed(timestep_embedding(timesteps, self.model_channels))
981
+
982
+ results = []
983
+ h = x.type(self.dtype)
984
+ for module in self.input_blocks:
985
+ h = module(h, emb)
986
+ if self.pool.startswith("spatial"):
987
+ results.append(h.type(x.dtype).mean(dim=(2, 3)))
988
+ h = self.middle_block(h, emb)
989
+ if self.pool.startswith("spatial"):
990
+ results.append(h.type(x.dtype).mean(dim=(2, 3)))
991
+ h = th.cat(results, axis=-1)
992
+ return self.out(h)
993
+ else:
994
+ h = h.type(x.dtype)
995
+ return self.out(h)
996
+
ldm/modules/diffusionmodules/util.py ADDED
@@ -0,0 +1,267 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # adopted from
2
+ # https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py
3
+ # and
4
+ # https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
5
+ # and
6
+ # https://github.com/openai/guided-diffusion/blob/0ba878e517b276c45d1195eb29f6f5f72659a05b/guided_diffusion/nn.py
7
+ #
8
+ # thanks!
9
+
10
+
11
+ import os
12
+ import math
13
+ import torch
14
+ import torch.nn as nn
15
+ import numpy as np
16
+ from einops import repeat
17
+
18
+ from ldm.util import instantiate_from_config
19
+
20
+
21
+ def make_beta_schedule(schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
22
+ if schedule == "linear":
23
+ betas = (
24
+ torch.linspace(linear_start ** 0.5, linear_end ** 0.5, n_timestep, dtype=torch.float64) ** 2
25
+ )
26
+
27
+ elif schedule == "cosine":
28
+ timesteps = (
29
+ torch.arange(n_timestep + 1, dtype=torch.float64) / n_timestep + cosine_s
30
+ )
31
+ alphas = timesteps / (1 + cosine_s) * np.pi / 2
32
+ alphas = torch.cos(alphas).pow(2)
33
+ alphas = alphas / alphas[0]
34
+ betas = 1 - alphas[1:] / alphas[:-1]
35
+ betas = np.clip(betas, a_min=0, a_max=0.999)
36
+
37
+ elif schedule == "sqrt_linear":
38
+ betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64)
39
+ elif schedule == "sqrt":
40
+ betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64) ** 0.5
41
+ else:
42
+ raise ValueError(f"schedule '{schedule}' unknown.")
43
+ return betas.numpy()
44
+
45
+
46
+ def make_ddim_timesteps(ddim_discr_method, num_ddim_timesteps, num_ddpm_timesteps, verbose=True):
47
+ if ddim_discr_method == 'uniform':
48
+ c = num_ddpm_timesteps // num_ddim_timesteps
49
+ ddim_timesteps = np.asarray(list(range(0, num_ddpm_timesteps, c)))
50
+ elif ddim_discr_method == 'quad':
51
+ ddim_timesteps = ((np.linspace(0, np.sqrt(num_ddpm_timesteps * .8), num_ddim_timesteps)) ** 2).astype(int)
52
+ else:
53
+ raise NotImplementedError(f'There is no ddim discretization method called "{ddim_discr_method}"')
54
+
55
+ # assert ddim_timesteps.shape[0] == num_ddim_timesteps
56
+ # add one to get the final alpha values right (the ones from first scale to data during sampling)
57
+ steps_out = ddim_timesteps + 1
58
+ if verbose:
59
+ print(f'Selected timesteps for ddim sampler: {steps_out}')
60
+ return steps_out
61
+
62
+
63
+ def make_ddim_sampling_parameters(alphacums, ddim_timesteps, eta, verbose=True):
64
+ # select alphas for computing the variance schedule
65
+ alphas = alphacums[ddim_timesteps]
66
+ alphas_prev = np.asarray([alphacums[0]] + alphacums[ddim_timesteps[:-1]].tolist())
67
+
68
+ # according the the formula provided in https://arxiv.org/abs/2010.02502
69
+ sigmas = eta * np.sqrt((1 - alphas_prev) / (1 - alphas) * (1 - alphas / alphas_prev))
70
+ if verbose:
71
+ print(f'Selected alphas for ddim sampler: a_t: {alphas}; a_(t-1): {alphas_prev}')
72
+ print(f'For the chosen value of eta, which is {eta}, '
73
+ f'this results in the following sigma_t schedule for ddim sampler {sigmas}')
74
+ return sigmas, alphas, alphas_prev
75
+
76
+
77
+ def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999):
78
+ """
79
+ Create a beta schedule that discretizes the given alpha_t_bar function,
80
+ which defines the cumulative product of (1-beta) over time from t = [0,1].
81
+ :param num_diffusion_timesteps: the number of betas to produce.
82
+ :param alpha_bar: a lambda that takes an argument t from 0 to 1 and
83
+ produces the cumulative product of (1-beta) up to that
84
+ part of the diffusion process.
85
+ :param max_beta: the maximum beta to use; use values lower than 1 to
86
+ prevent singularities.
87
+ """
88
+ betas = []
89
+ for i in range(num_diffusion_timesteps):
90
+ t1 = i / num_diffusion_timesteps
91
+ t2 = (i + 1) / num_diffusion_timesteps
92
+ betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
93
+ return np.array(betas)
94
+
95
+
96
+ def extract_into_tensor(a, t, x_shape):
97
+ b, *_ = t.shape
98
+ out = a.gather(-1, t)
99
+ return out.reshape(b, *((1,) * (len(x_shape) - 1)))
100
+
101
+
102
+ def checkpoint(func, inputs, params, flag):
103
+ """
104
+ Evaluate a function without caching intermediate activations, allowing for
105
+ reduced memory at the expense of extra compute in the backward pass.
106
+ :param func: the function to evaluate.
107
+ :param inputs: the argument sequence to pass to `func`.
108
+ :param params: a sequence of parameters `func` depends on but does not
109
+ explicitly take as arguments.
110
+ :param flag: if False, disable gradient checkpointing.
111
+ """
112
+ if flag:
113
+ args = tuple(inputs) + tuple(params)
114
+ return CheckpointFunction.apply(func, len(inputs), *args)
115
+ else:
116
+ return func(*inputs)
117
+
118
+
119
+ class CheckpointFunction(torch.autograd.Function):
120
+ @staticmethod
121
+ def forward(ctx, run_function, length, *args):
122
+ ctx.run_function = run_function
123
+ ctx.input_tensors = list(args[:length])
124
+ ctx.input_params = list(args[length:])
125
+
126
+ with torch.no_grad():
127
+ output_tensors = ctx.run_function(*ctx.input_tensors)
128
+ return output_tensors
129
+
130
+ @staticmethod
131
+ def backward(ctx, *output_grads):
132
+ ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors]
133
+ with torch.enable_grad():
134
+ # Fixes a bug where the first op in run_function modifies the
135
+ # Tensor storage in place, which is not allowed for detach()'d
136
+ # Tensors.
137
+ shallow_copies = [x.view_as(x) for x in ctx.input_tensors]
138
+ output_tensors = ctx.run_function(*shallow_copies)
139
+ input_grads = torch.autograd.grad(
140
+ output_tensors,
141
+ ctx.input_tensors + ctx.input_params,
142
+ output_grads,
143
+ allow_unused=True,
144
+ )
145
+ del ctx.input_tensors
146
+ del ctx.input_params
147
+ del output_tensors
148
+ return (None, None) + input_grads
149
+
150
+
151
+ def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False):
152
+ """
153
+ Create sinusoidal timestep embeddings.
154
+ :param timesteps: a 1-D Tensor of N indices, one per batch element.
155
+ These may be fractional.
156
+ :param dim: the dimension of the output.
157
+ :param max_period: controls the minimum frequency of the embeddings.
158
+ :return: an [N x dim] Tensor of positional embeddings.
159
+ """
160
+ if not repeat_only:
161
+ half = dim // 2
162
+ freqs = torch.exp(
163
+ -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
164
+ ).to(device=timesteps.device)
165
+ args = timesteps[:, None].float() * freqs[None]
166
+ embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
167
+ if dim % 2:
168
+ embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
169
+ else:
170
+ embedding = repeat(timesteps, 'b -> b d', d=dim)
171
+ return embedding
172
+
173
+
174
+ def zero_module(module):
175
+ """
176
+ Zero out the parameters of a module and return it.
177
+ """
178
+ for p in module.parameters():
179
+ p.detach().zero_()
180
+ return module
181
+
182
+
183
+ def scale_module(module, scale):
184
+ """
185
+ Scale the parameters of a module and return it.
186
+ """
187
+ for p in module.parameters():
188
+ p.detach().mul_(scale)
189
+ return module
190
+
191
+
192
+ def mean_flat(tensor):
193
+ """
194
+ Take the mean over all non-batch dimensions.
195
+ """
196
+ return tensor.mean(dim=list(range(1, len(tensor.shape))))
197
+
198
+
199
+ def normalization(channels):
200
+ """
201
+ Make a standard normalization layer.
202
+ :param channels: number of input channels.
203
+ :return: an nn.Module for normalization.
204
+ """
205
+ return GroupNorm32(32, channels)
206
+
207
+
208
+ # PyTorch 1.7 has SiLU, but we support PyTorch 1.5.
209
+ class SiLU(nn.Module):
210
+ def forward(self, x):
211
+ return x * torch.sigmoid(x)
212
+
213
+
214
+ class GroupNorm32(nn.GroupNorm):
215
+ def forward(self, x):
216
+ return super().forward(x.float()).type(x.dtype)
217
+
218
+ def conv_nd(dims, *args, **kwargs):
219
+ """
220
+ Create a 1D, 2D, or 3D convolution module.
221
+ """
222
+ if dims == 1:
223
+ return nn.Conv1d(*args, **kwargs)
224
+ elif dims == 2:
225
+ return nn.Conv2d(*args, **kwargs)
226
+ elif dims == 3:
227
+ return nn.Conv3d(*args, **kwargs)
228
+ raise ValueError(f"unsupported dimensions: {dims}")
229
+
230
+
231
+ def linear(*args, **kwargs):
232
+ """
233
+ Create a linear module.
234
+ """
235
+ return nn.Linear(*args, **kwargs)
236
+
237
+
238
+ def avg_pool_nd(dims, *args, **kwargs):
239
+ """
240
+ Create a 1D, 2D, or 3D average pooling module.
241
+ """
242
+ if dims == 1:
243
+ return nn.AvgPool1d(*args, **kwargs)
244
+ elif dims == 2:
245
+ return nn.AvgPool2d(*args, **kwargs)
246
+ elif dims == 3:
247
+ return nn.AvgPool3d(*args, **kwargs)
248
+ raise ValueError(f"unsupported dimensions: {dims}")
249
+
250
+
251
+ class HybridConditioner(nn.Module):
252
+
253
+ def __init__(self, c_concat_config, c_crossattn_config):
254
+ super().__init__()
255
+ self.concat_conditioner = instantiate_from_config(c_concat_config)
256
+ self.crossattn_conditioner = instantiate_from_config(c_crossattn_config)
257
+
258
+ def forward(self, c_concat, c_crossattn):
259
+ c_concat = self.concat_conditioner(c_concat)
260
+ c_crossattn = self.crossattn_conditioner(c_crossattn)
261
+ return {'c_concat': [c_concat], 'c_crossattn': [c_crossattn]}
262
+
263
+
264
+ def noise_like(shape, device, repeat=False):
265
+ repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1)))
266
+ noise = lambda: torch.randn(shape, device=device)
267
+ return repeat_noise() if repeat else noise()
ldm/modules/distributions/__init__.py ADDED
File without changes