model: base_learning_rate: 5.0e-05 target: SyncDreamer.ldm.models.diffusion.sync_dreamer.SyncMultiviewDiffusion params: view_num: 16 image_size: 256 cfg_scale: 2.0 output_num: 8 batch_view_num: 4 finetune_unet: false finetune_projection: false drop_conditions: false clip_image_encoder_path: SyncDreamer/ckpt/ViT-L-14.pt scheduler_config: # 10000 warmup steps target: SyncDreamer.ldm.lr_scheduler.LambdaLinearScheduler params: warm_up_steps: [ 100 ] cycle_lengths: [ 100000 ] f_start: [ 0.02 ] f_max: [ 1.0 ] f_min: [ 1.0 ] unet_config: target: SyncDreamer.ldm.models.diffusion.sync_dreamer_attention.DepthWiseAttention params: volume_dims: [64, 128, 256, 512] image_size: 32 in_channels: 8 out_channels: 4 model_channels: 320 attention_resolutions: [ 4, 2, 1 ] num_res_blocks: 2 channel_mult: [ 1, 2, 4, 4 ] num_heads: 8 use_spatial_transformer: True transformer_depth: 1 context_dim: 768 use_checkpoint: False legacy: False data: target: SyncDreamer.ldm.data.sync_dreamer.SyncDreamerDataset params: target_dir: training_examples/target # renderings of target views input_dir: training_examples/input # renderings of input views uid_set_pkl: training_examples/uid_set.pkl # a list of uids validation_dir: validation_set # directory of validation data batch_size: 24 # batch size for a single gpu num_workers: 8 lightning: modelcheckpoint: params: every_n_train_steps: 1000 # we will save models every 1k steps callbacks: {} trainer: benchmark: True val_check_interval: 1000 # we will run validation every 1k steps, the validation will output images to //val num_sanity_val_steps: 0 check_val_every_n_epoch: null