Spaces:
Runtime error
Runtime error
import math | |
import numpy as np | |
import torch | |
from diff_gaussian_rasterization import ( | |
GaussianRasterizationSettings, | |
GaussianRasterizer, | |
) | |
from sh_utils import eval_sh, SH2RGB, RGB2SH | |
from gaussian_model_4d import GaussianModel, BasicPointCloud | |
def getProjectionMatrix(znear, zfar, fovX, fovY): | |
tanHalfFovY = math.tan((fovY / 2)) | |
tanHalfFovX = math.tan((fovX / 2)) | |
P = torch.zeros(4, 4) | |
z_sign = 1.0 | |
P[0, 0] = 1 / tanHalfFovX | |
P[1, 1] = 1 / tanHalfFovY | |
P[3, 2] = z_sign | |
P[2, 2] = z_sign * zfar / (zfar - znear) | |
P[2, 3] = -(zfar * znear) / (zfar - znear) | |
return P | |
class MiniCam: | |
def __init__(self, c2w, width, height, fovy, fovx, znear, zfar, time=0, gs_convention=True): | |
# c2w (pose) should be in NeRF convention. | |
self.image_width = width | |
self.image_height = height | |
self.FoVy = fovy | |
self.FoVx = fovx | |
self.znear = znear | |
self.zfar = zfar | |
w2c = np.linalg.inv(c2w) | |
if gs_convention: | |
# rectify... | |
w2c[1:3, :3] *= -1 | |
w2c[:3, 3] *= -1 | |
self.world_view_transform = torch.tensor(w2c).transpose(0, 1).cuda() | |
self.projection_matrix = ( | |
getProjectionMatrix( | |
znear=self.znear, zfar=self.zfar, fovX=self.FoVx, fovY=self.FoVy | |
) | |
.transpose(0, 1) | |
.cuda() | |
) | |
self.full_proj_transform = self.world_view_transform @ self.projection_matrix | |
self.camera_center = -torch.tensor(c2w[:3, 3]).cuda() | |
self.time = time | |
class Renderer: | |
def __init__(self, opt, sh_degree=3, white_background=True, radius=1): | |
self.sh_degree = sh_degree | |
self.white_background = white_background | |
self.radius = radius | |
self.opt = opt | |
self.T = self.opt.batch_size | |
self.gaussians = GaussianModel(sh_degree, opt.deformation) | |
self.bg_color = torch.tensor( | |
[1, 1, 1] if white_background else [0, 0, 0], | |
dtype=torch.float32, | |
device="cuda", | |
) | |
self.means3D_deform_T = None | |
self.opacity_deform_T = None | |
self.scales_deform_T = None | |
self.rotations_deform_T = None | |
def initialize(self, input=None, num_pts=5000, radius=0.5): | |
# load checkpoint | |
if input is None: | |
# init from random point cloud | |
phis = np.random.random((num_pts,)) * 2 * np.pi | |
costheta = np.random.random((num_pts,)) * 2 - 1 | |
thetas = np.arccos(costheta) | |
mu = np.random.random((num_pts,)) | |
radius = radius * np.cbrt(mu) | |
x = radius * np.sin(thetas) * np.cos(phis) | |
y = radius * np.sin(thetas) * np.sin(phis) | |
z = radius * np.cos(thetas) | |
xyz = np.stack((x, y, z), axis=1) | |
# xyz = np.random.random((num_pts, 3)) * 2.6 - 1.3 | |
shs = np.random.random((num_pts, 3)) / 255.0 | |
pcd = BasicPointCloud( | |
points=xyz, colors=SH2RGB(shs), normals=np.zeros((num_pts, 3)) | |
) | |
# self.gaussians.create_from_pcd(pcd, 10) | |
self.gaussians.create_from_pcd(pcd, 10, 1) | |
elif isinstance(input, BasicPointCloud): | |
# load from a provided pcd | |
self.gaussians.create_from_pcd(input, 1) | |
else: | |
# load from saved ply | |
self.gaussians.load_ply(input) | |
def prepare_render( | |
self, | |
): | |
means3D = self.gaussians.get_xyz | |
opacity = self.gaussians._opacity | |
scales = self.gaussians._scaling | |
rotations = self.gaussians._rotation | |
means3D_T = [] | |
opacity_T = [] | |
scales_T = [] | |
rotations_T = [] | |
time_T = [] | |
for t in range(self.T): | |
time = torch.tensor(t).to(means3D.device).repeat(means3D.shape[0],1) | |
time = ((time.float() / self.T) - 0.5) * 2 | |
means3D_T.append(means3D) | |
opacity_T.append(opacity) | |
scales_T.append(scales) | |
rotations_T.append(rotations) | |
time_T.append(time) | |
means3D_T = torch.cat(means3D_T) | |
opacity_T = torch.cat(opacity_T) | |
scales_T = torch.cat(scales_T) | |
rotations_T = torch.cat(rotations_T) | |
time_T = torch.cat(time_T) | |
means3D_deform_T, scales_deform_T, rotations_deform_T, opacity_deform_T = self.gaussians._deformation(means3D_T, scales_T, | |
rotations_T, opacity_T, | |
time_T) # time is not none | |
self.means3D_deform_T = means3D_deform_T.reshape([self.T, means3D_deform_T.shape[0]//self.T, -1]) | |
self.opacity_deform_T = opacity_deform_T.reshape([self.T, means3D_deform_T.shape[0]//self.T, -1]) | |
self.scales_deform_T = scales_deform_T.reshape([self.T, means3D_deform_T.shape[0]//self.T, -1]) | |
self.rotations_deform_T = rotations_deform_T.reshape([self.T, means3D_deform_T.shape[0]//self.T, -1]) | |
def render( | |
self, | |
viewpoint_camera, | |
scaling_modifier=1.0, | |
bg_color=None, | |
override_color=None, | |
compute_cov3D_python=False, | |
convert_SHs_python=False, | |
): | |
# Create zero tensor. We will use it to make pytorch return gradients of the 2D (screen-space) means | |
screenspace_points = ( | |
torch.zeros_like( | |
self.gaussians.get_xyz, | |
dtype=self.gaussians.get_xyz.dtype, | |
requires_grad=True, | |
device="cuda", | |
) | |
+ 0 | |
) | |
try: | |
screenspace_points.retain_grad() | |
except: | |
pass | |
# Set up rasterization configuration | |
tanfovx = math.tan(viewpoint_camera.FoVx * 0.5) | |
tanfovy = math.tan(viewpoint_camera.FoVy * 0.5) | |
raster_settings = GaussianRasterizationSettings( | |
image_height=int(viewpoint_camera.image_height), | |
image_width=int(viewpoint_camera.image_width), | |
tanfovx=tanfovx, | |
tanfovy=tanfovy, | |
bg=self.bg_color if bg_color is None else bg_color, | |
scale_modifier=scaling_modifier, | |
viewmatrix=viewpoint_camera.world_view_transform, | |
projmatrix=viewpoint_camera.full_proj_transform, | |
sh_degree=self.gaussians.active_sh_degree, | |
campos=viewpoint_camera.camera_center, | |
prefiltered=False, | |
debug=False, | |
) | |
rasterizer = GaussianRasterizer(raster_settings=raster_settings) | |
means3D = self.gaussians.get_xyz | |
time = torch.tensor(viewpoint_camera.time).to(means3D.device).repeat(means3D.shape[0],1) | |
time = ((time.float() / self.T) - 0.5) * 2 | |
means2D = screenspace_points | |
opacity = self.gaussians._opacity | |
# If precomputed 3d covariance is provided, use it. If not, then it will be computed from | |
# scaling / rotation by the rasterizer. | |
scales = None | |
rotations = None | |
cov3D_precomp = None | |
if compute_cov3D_python: | |
cov3D_precomp = self.gaussians.get_covariance(scaling_modifier) | |
else: | |
scales = self.gaussians._scaling | |
rotations = self.gaussians._rotation | |
means3D_deform, scales_deform, rotations_deform, opacity_deform = self.means3D_deform_T[viewpoint_camera.time], self.scales_deform_T[viewpoint_camera.time], self.rotations_deform_T[viewpoint_camera.time], self.opacity_deform_T[viewpoint_camera.time] | |
means3D_final = means3D + means3D_deform | |
rotations_final = rotations + rotations_deform | |
scales_final = scales + scales_deform | |
opacity_final = opacity + opacity_deform | |
scales_final = self.gaussians.scaling_activation(scales_final) | |
rotations_final = self.gaussians.rotation_activation(rotations_final) | |
opacity = self.gaussians.opacity_activation(opacity) | |
# If precomputed colors are provided, use them. Otherwise, if it is desired to precompute colors | |
# from SHs in Python, do it. If not, then SH -> RGB conversion will be done by rasterizer. | |
shs = None | |
colors_precomp = None | |
if colors_precomp is None: | |
if convert_SHs_python: | |
shs_view = self.gaussians.get_features.transpose(1, 2).view( | |
-1, 3, (self.gaussians.max_sh_degree + 1) ** 2 | |
) | |
dir_pp = self.gaussians.get_xyz - viewpoint_camera.camera_center.repeat( | |
self.gaussians.get_features.shape[0], 1 | |
) | |
dir_pp_normalized = dir_pp / dir_pp.norm(dim=1, keepdim=True) | |
sh2rgb = eval_sh( | |
self.gaussians.active_sh_degree, shs_view, dir_pp_normalized | |
) | |
colors_precomp = torch.clamp_min(sh2rgb + 0.5, 0.0) | |
else: | |
shs = self.gaussians.get_features | |
else: | |
colors_precomp = override_color | |
rendered_image, radii, rendered_depth, rendered_alpha = rasterizer( | |
means3D = means3D_final, | |
means2D = means2D, | |
shs = shs, | |
colors_precomp = colors_precomp, | |
opacities = opacity, | |
scales = scales_final, | |
rotations = rotations_final, | |
cov3D_precomp = cov3D_precomp) | |
rendered_image = rendered_image.clamp(0, 1) | |
# Those Gaussians that were frustum culled or had a radius of 0 were not visible. | |
# They will be excluded from value updates used in the splitting criteria. | |
return { | |
"image": rendered_image, | |
"depth": rendered_depth, | |
"alpha": rendered_alpha, | |
"viewspace_points": screenspace_points, | |
"visibility_filter": radii > 0, | |
"radii": radii, | |
} | |