jiaweir
init
21c4e64
import torch
from diffusers import StableVideoDiffusionPipeline
from PIL import Image
import numpy as np
import cv2
import rembg
import argparse
import imageio
import os
def add_margin(pil_img, top, right, bottom, left, color):
width, height = pil_img.size
new_width = width + right + left
new_height = height + top + bottom
result = Image.new(pil_img.mode, (new_width, new_height), color)
result.paste(pil_img, (left, top))
return result
def resize_image(image, output_size=(1024, 576)):
image = image.resize((output_size[1],output_size[1]))
pad_size = (output_size[0]-output_size[1]) //2
image = add_margin(image, 0, pad_size, 0, pad_size, tuple(np.array(image)[0,0]))
return image
def load_image(file, W, H, bg='white'):
# load image
print(f'[INFO] load image from {file}...')
img = cv2.imread(file, cv2.IMREAD_UNCHANGED)
bg_remover = rembg.new_session()
img = rembg.remove(img, session=bg_remover)
img = cv2.resize(img, (W, H), interpolation=cv2.INTER_AREA)
img = img.astype(np.float32) / 255.0
input_mask = img[..., 3:]
# white bg
if bg == 'white':
input_img = img[..., :3] * input_mask + (1 - input_mask)
elif bg == 'black':
input_img = img[..., :3]
else:
raise NotImplementedError
# bgr to rgb
input_img = input_img[..., ::-1].copy()
input_img = Image.fromarray(np.uint8(input_img*255))
return input_img
def load_image_w_bg(file, W, H):
# load image
print(f'[INFO] load image from {file}...')
img = cv2.imread(file, cv2.IMREAD_UNCHANGED)
img = cv2.resize(img, (W, H), interpolation=cv2.INTER_AREA)
img = img.astype(np.float32) / 255.0
input_img = img[..., :3]
# bgr to rgb
input_img = input_img[..., ::-1].copy()
input_img = Image.fromarray(np.uint8(input_img*255))
return input_img
def gen_vid(input_path, seed, bg, is_pad):
name = input_path.split('/')[-1].split('.')[0]
input_dir = os.path.dirname(input_path)
pipe = StableVideoDiffusionPipeline.from_pretrained(
"stabilityai/stable-video-diffusion-img2vid", torch_dtype=torch.float16, variant="fp16"
)
# pipe.enable_model_cpu_offload()
pipe.to("cuda")
if is_pad:
height, width = 576, 1024
else:
height, width = 512, 512
if seed is None:
for bg in ['white', 'black', 'orig']:
if bg == 'orig':
if 'rgba' in name:
continue
image = load_image_w_bg(input_path, width, height)
else:
image = load_image(input_path, width, height, bg)
if is_pad:
image = resize_image(image, output_size=(width, height))
for seed in range(20):
generator = torch.manual_seed(seed)
frames = pipe(image, height, width, generator=generator).frames[0]
imageio.mimwrite(f"{input_dir}/videos/{name}_{bg}_{seed:03}.mp4", frames, fps=7)
else:
if bg == 'orig':
if 'rgba' in name:
raise ValueError
image = load_image_w_bg(input_path, width, height)
else:
image = load_image(input_path, width, height, bg)
if is_pad:
image = resize_image(image, output_size=(width, height))
generator = torch.manual_seed(seed)
frames = pipe(image, height, width, generator=generator).frames[0]
imageio.mimwrite(f"{input_dir}/{name}_generated.mp4", frames, fps=7)
os.makedirs(f"{input_dir}/{name}_frames", exist_ok=True)
for idx, img in enumerate(frames):
if is_pad:
img = img.crop(((width-height) //2, 0, width - (width-height) //2, height))
img.save(f"{input_dir}/{name}_frames/{idx:03}.png")
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--path", type=str, required=True)
parser.add_argument("--seed", type=int, default=None)
parser.add_argument("--bg", type=str, default='white')
parser.add_argument("--is_pad", type=bool, default=False)
args, extras = parser.parse_known_args()
gen_vid(args.path, args.seed, args.bg, args.is_pad)