File size: 9,920 Bytes
7352753
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import numpy as np
import cv2
from basicsr.utils import img2tensor
import torch
import torch.nn.functional as F

def resize_numpy_image(image, max_resolution=768 * 768, resize_short_edge=None):
    h, w = image.shape[:2]
    w_org = image.shape[1]
    if resize_short_edge is not None:
        k = resize_short_edge / min(h, w)
    else:
        k = max_resolution / (h * w)
        k = k**0.5
    h = int(np.round(h * k / 64)) * 64
    w = int(np.round(w * k / 64)) * 64
    image = cv2.resize(image, (w, h), interpolation=cv2.INTER_LANCZOS4)
    scale = w/w_org
    return image, scale

def split_ldm(ldm):
    x = []
    y = []
    for p in ldm:
        x.append(p[0])
        y.append(p[1])
    return x,y

def process_move(path_mask, h, w, dx, dy, scale, input_scale, resize_scale, up_scale, up_ft_index, w_edit, w_content, w_contrast, w_inpaint,  precision, path_mask_ref=None):
    dx, dy = dx*input_scale, dy*input_scale
    if isinstance(path_mask, str):
        mask_x0 = cv2.imread(path_mask)
    else:
        mask_x0 = path_mask
    mask_x0 = cv2.resize(mask_x0, (h, w))
    if path_mask_ref is not None:
        if isinstance(path_mask_ref, str):
            mask_x0_ref = cv2.imread(path_mask_ref)
        else:
            mask_x0_ref = path_mask_ref
        mask_x0_ref = cv2.resize(mask_x0_ref, (h, w))
    else:
        mask_x0_ref=None

    mask_x0 = img2tensor(mask_x0)[0]
    mask_x0 = (mask_x0>0.5).float().to('cuda', dtype=precision)
    if mask_x0_ref is not None:
        mask_x0_ref = img2tensor(mask_x0_ref)[0]
        mask_x0_ref = (mask_x0_ref>0.5).float().to('cuda', dtype=precision)
    mask_org = F.interpolate(mask_x0[None,None], (int(mask_x0.shape[-2]//scale), int(mask_x0.shape[-1]//scale)))>0.5

    mask_tar = F.interpolate(mask_x0[None,None], (int(mask_x0.shape[-2]//scale*resize_scale), int(mask_x0.shape[-1]//scale*resize_scale)))>0.5
    mask_cur = torch.roll(mask_tar, (int(dy//scale*resize_scale), int(dx//scale*resize_scale)), (-2,-1))
    
    pad_size_x = abs(mask_tar.shape[-1]-mask_org.shape[-1])//2
    pad_size_y = abs(mask_tar.shape[-2]-mask_org.shape[-2])//2
    if resize_scale>1:
        sum_before = torch.sum(mask_cur)
        mask_cur = mask_cur[:,:,pad_size_y:pad_size_y+mask_org.shape[-2],pad_size_x:pad_size_x+mask_org.shape[-1]]
        sum_after = torch.sum(mask_cur)
        if sum_after != sum_before:
            raise ValueError('Resize out of bounds, exiting.')
    else:
        temp = torch.zeros(1,1,mask_org.shape[-2], mask_org.shape[-1]).to(mask_org.device)
        temp[:,:,pad_size_y:pad_size_y+mask_cur.shape[-2],pad_size_x:pad_size_x+mask_cur.shape[-1]]=mask_cur
        mask_cur =temp>0.5

    mask_other = (1-((mask_cur+mask_org)>0.5).float())>0.5
    mask_overlap = ((mask_cur.float()+mask_org.float())>1.5).float()
    mask_non_overlap = (mask_org.float()-mask_overlap)>0.5

    return {
        "mask_x0":mask_x0, 
        "mask_x0_ref":mask_x0_ref, 
        "mask_tar":mask_tar, 
        "mask_cur":mask_cur, 
        "mask_other":mask_other, 
        "mask_overlap":mask_overlap, 
        "mask_non_overlap":mask_non_overlap, 
        "up_scale":up_scale,
        "up_ft_index":up_ft_index,
        "resize_scale":resize_scale,
        "w_edit":w_edit,
        "w_content":w_content,
        "w_contrast":w_contrast,
        "w_inpaint":w_inpaint, 
    }

def process_drag_face(h, w, x, y, x_cur, y_cur, scale, input_scale, up_scale, up_ft_index, w_edit, w_inpaint, precision):
    for i in range(len(x)):
        x[i] = int(x[i]*input_scale)
        y[i] = int(y[i]*input_scale)
        x_cur[i] = int(x_cur[i]*input_scale)
        y_cur[i] = int(y_cur[i]*input_scale)

    mask_tar = []
    for p_idx in range(len(x)):
        mask_i = torch.zeros(int(h//scale), int(w//scale)).cuda()
        y_clip = int(np.clip(y[p_idx]//scale, 1, mask_i.shape[0]-2))
        x_clip = int(np.clip(x[p_idx]//scale, 1, mask_i.shape[1]-2))
        mask_i[y_clip-1:y_clip+2,x_clip-1:x_clip+2]=1
        mask_i = mask_i>0.5
        mask_tar.append(mask_i)
    mask_cur = []
    for p_idx in range(len(x_cur)):
        mask_i = torch.zeros(int(h//scale), int(w//scale)).cuda()
        y_clip = int(np.clip(y_cur[p_idx]//scale, 1, mask_i.shape[0]-2))
        x_clip = int(np.clip(x_cur[p_idx]//scale, 1, mask_i.shape[1]-2))
        mask_i[y_clip-1:y_clip+2,x_clip-1:x_clip+2]=1
        mask_i=mask_i>0.5
        mask_cur.append(mask_i)

    return {
        "mask_tar":mask_tar,
        "mask_cur":mask_cur,
        "up_scale":up_scale,
        "up_ft_index":up_ft_index,
        "w_edit": w_edit,
        "w_inpaint": w_inpaint,
    }

def process_drag(path_mask, h, w, x, y, x_cur, y_cur, scale, input_scale, up_scale, up_ft_index, w_edit, w_inpaint, w_content, precision, latent_in):
    if isinstance(path_mask, str):
        mask_x0 = cv2.imread(path_mask)
    else:
        mask_x0 = path_mask
    mask_x0 = cv2.resize(mask_x0, (h, w))
    mask_x0 = img2tensor(mask_x0)[0]
    dict_mask = {}
    dict_mask['base'] = mask_x0
    mask_x0 = (mask_x0>0.5).float().to('cuda', dtype=precision)

    mask_other = F.interpolate(mask_x0[None,None], (int(mask_x0.shape[-2]//scale), int(mask_x0.shape[-1]//scale)))<0.5
    mask_tar = []
    mask_cur = []
    for p_idx in range(len(x)):
        mask_tar_i = torch.zeros(int(mask_x0.shape[-2]//scale), int(mask_x0.shape[-1]//scale)).to('cuda', dtype=precision)
        mask_cur_i = torch.zeros(int(mask_x0.shape[-2]//scale), int(mask_x0.shape[-1]//scale)).to('cuda', dtype=precision)
        y_tar_clip = int(np.clip(y[p_idx]//scale, 1, mask_tar_i.shape[0]-2))
        x_tar_clip = int(np.clip(x[p_idx]//scale, 1, mask_tar_i.shape[0]-2))
        y_cur_clip = int(np.clip(y_cur[p_idx]//scale, 1, mask_cur_i.shape[0]-2))
        x_cur_clip = int(np.clip(x_cur[p_idx]//scale, 1, mask_cur_i.shape[0]-2))
        mask_tar_i[y_tar_clip-1:y_tar_clip+2,x_tar_clip-1:x_tar_clip+2]=1
        mask_cur_i[y_cur_clip-1:y_cur_clip+2,x_cur_clip-1:x_cur_clip+2]=1
        mask_tar_i = mask_tar_i>0.5
        mask_cur_i=mask_cur_i>0.5
        mask_tar.append(mask_tar_i)
        mask_cur.append(mask_cur_i)
        latent_in[:,:,y_cur_clip//up_scale-1:y_cur_clip//up_scale+2, x_cur_clip//up_scale-1:x_cur_clip//up_scale+2] = latent_in[:,:, y_tar_clip//up_scale-1:y_tar_clip//up_scale+2, x_tar_clip//up_scale-1:x_tar_clip//up_scale+2] 
        

    return {
        "dict_mask":dict_mask,
        "mask_x0":mask_x0,
        "mask_tar":mask_tar,
        "mask_cur":mask_cur,
        "mask_other":mask_other,
        "up_scale":up_scale,
        "up_ft_index":up_ft_index,
        "w_edit": w_edit,
        "w_inpaint": w_inpaint,
        "w_content": w_content,
        "latent_in":latent_in,
    }

def process_appearance(path_mask, path_mask_replace, h, w, scale, input_scale, up_scale, up_ft_index, w_edit, w_content, precision):
    if isinstance(path_mask, str):
        mask_base = cv2.imread(path_mask)
    else:
        mask_base = path_mask
    mask_base = cv2.resize(mask_base, (h, w))
    if isinstance(path_mask_replace, str):
        mask_replace = cv2.imread(path_mask_replace)
    else:
        mask_replace = path_mask_replace
    mask_replace = cv2.resize(mask_replace, (h, w))

    dict_mask = {}
    mask_base = img2tensor(mask_base)[0]
    dict_mask['base'] = mask_base
    mask_base = (mask_base>0.5).to('cuda', dtype=precision)
    mask_replace = img2tensor(mask_replace)[0]
    dict_mask['replace'] = mask_replace
    mask_replace = (mask_replace>0.5).to('cuda', dtype=precision)

    mask_base_cur = F.interpolate(mask_base[None,None], (int(mask_base.shape[-2]//scale), int(mask_base.shape[-1]//scale)))>0.5
    mask_replace_cur = F.interpolate(mask_replace[None,None], (int(mask_replace.shape[-2]//scale), int(mask_replace.shape[-1]//scale)))>0.5

    return {
        "dict_mask":dict_mask,
        "mask_base_cur":mask_base_cur,
        "mask_replace_cur":mask_replace_cur,
        "up_scale":up_scale,
        "up_ft_index":up_ft_index,
        "w_edit":w_edit,
        "w_content":w_content,
    }

def process_paste(path_mask, h, w, dx, dy, scale, input_scale, up_scale, up_ft_index, w_edit, w_content, precision, resize_scale=None):
    dx, dy = dx*input_scale, dy*input_scale
    if isinstance(path_mask, str):
        mask_base = cv2.imread(path_mask)
    else:
        mask_base = path_mask
    mask_base = cv2.resize(mask_base, (h, w))

    dict_mask = {}
    mask_base = img2tensor(mask_base)[0][None, None]
    mask_base = (mask_base>0.5).to('cuda', dtype=precision)
    if resize_scale is not None and resize_scale!=1:
        hi, wi = mask_base.shape[-2], mask_base.shape[-1]
        mask_base = F.interpolate(mask_base, (int(hi*resize_scale), int(wi*resize_scale)))
        pad_size_x = np.abs(mask_base.shape[-1]-wi)//2
        pad_size_y = np.abs(mask_base.shape[-2]-hi)//2
        if resize_scale>1:
            mask_base = mask_base[:,:,pad_size_y:pad_size_y+hi,pad_size_x:pad_size_x+wi]
        else:
            temp = torch.zeros(1,1,hi, wi).to(mask_base.device)
            temp[:,:,pad_size_y:pad_size_y+mask_base.shape[-2],pad_size_x:pad_size_x+mask_base.shape[-1]]=mask_base
            mask_base = temp
    mask_replace = mask_base.clone()
    mask_base = torch.roll(mask_base, (int(dy), int(dx)), (-2,-1))
    dict_mask['base'] = mask_base[0,0]
    dict_mask['replace'] = mask_replace[0,0]
    mask_replace = (mask_replace>0.5).to('cuda', dtype=precision)

    mask_base_cur = F.interpolate(mask_base, (int(mask_base.shape[-2]//scale), int(mask_base.shape[-1]//scale)))>0.5
    mask_replace_cur = torch.roll(mask_base_cur, (-int(dy/scale), -int(dx/scale)), (-2,-1))

    return {
        "dict_mask":dict_mask,
        "mask_base_cur":mask_base_cur,
        "mask_replace_cur":mask_replace_cur,
        "up_scale":up_scale,
        "up_ft_index":up_ft_index,
        "w_edit":w_edit,
        "w_content":w_content,
        "w_edit":w_edit,
        "w_content":w_content,
    }