File size: 6,316 Bytes
22bdedf
8973ffd
cb253f3
22bdedf
 
 
 
 
 
8973ffd
 
 
22bdedf
 
 
8973ffd
22bdedf
 
7d23a88
 
 
 
 
 
8973ffd
7d23a88
 
 
 
22bdedf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18d2fb0
 
22bdedf
 
 
 
 
 
 
 
7d23a88
 
 
8973ffd
 
22bdedf
 
263d74d
22bdedf
 
 
 
 
 
 
 
8973ffd
22bdedf
 
8973ffd
 
 
22bdedf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8973ffd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22bdedf
 
 
 
 
 
 
 
7d23a88
db54719
e6e2169
 
7d23a88
22bdedf
b529762
22bdedf
b529762
 
 
cb253f3
22bdedf
 
 
 
 
 
 
 
 
 
 
 
 
 
09182d9
 
 
 
22bdedf
 
 
 
cb253f3
 
 
7d23a88
 
cb253f3
 
22bdedf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8973ffd
 
 
 
 
 
 
22bdedf
 
7d23a88
22bdedf
 
e978023
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import os
import re
import torch
import whisper
import validators
import gradio as gr

from wordcloud import WordCloud, STOPWORDS

from scipy.io.wavfile import write
from espnet2.bin.tts_inference import Text2Speech

# load whisper model for ASR and BART for summarization
asr_model = whisper.load_model('base.en')
summarizer = gr.Interface.load("facebook/bart-large-cnn", src='huggingface')
tts_model = Text2Speech.from_pretrained("espnet/kan-bayashi_ljspeech_joint_finetune_conformer_fastspeech2_hifigan")


def load_model(name: str):
    """

    :param name: model options, tiny or base only, for quick inference
    :return:
    """
    global asr_model
    asr_model = whisper.load_model(f"{name.lower()}.en")
    return name


def audio_from_url(url, dst_dir='data', name=None, format='wav'):
    """ Download video from url and save the audio from video

    :param url: str, the video url
    :param dst_dir: destination directory for save audio
    :param name: audio file's name, if none, assign the name as the video's title
    :param format: format type for audio file, such as 'wav', 'mp3'. WAV is preferred.
    :return: path of audio
    """

    if not validators.url(url):
        return None

    os.makedirs(dst_dir, exist_ok=True)

    # download audio
    path = os.path.join(dst_dir, f"audio.{format}")
    if os.path.exists(path):
        os.remove(path)
    os.system(f"yt-dlp -f 'ba' -x --audio-format {format} {url}  -o {path} --quiet")

    return path


def speech_to_text(audio, beam_size=5, best_of=5, language='en'):
    """ ASR inference with Whisper

    :param audio: filepath
    :param beam_size: beam search parameter
    :param best_of: number of best results
    :param language: Currently English only
    :return: transcription
    """

    result = asr_model.transcribe(audio, language=language, beam_size=beam_size, best_of=best_of, fp16=False)

    return result['text']


def text_summarization(text):
    return summarizer(text)


def wordcloud_func(text: str, out_path='data/wordcloud_output.png'):
    """ generate wordcloud based on text

    :param text: transcription
    :param out_path: filepath
    :return: filepath
    """

    if len(text) == 0:
        return None

    stopwords = STOPWORDS

    wc = WordCloud(
        background_color='white',
        stopwords=stopwords,
        height=600,
        width=600
    )

    wc.generate(text)
    wc.to_file(out_path)

    return out_path


def normalize_dollars(text):
    """ text normalization for '$'

    :param text:
    :return:
    """

    def expand_dollars(m):
        match = m.group(1)
        parts = match.split(' ')
        parts.append('dollars')
        return ' '.join(parts)

    units = ['hundred', 'thousand', 'million', 'billion', 'trillion']
    _dollars_re = re.compile(fr"\$([0-9\.\,]*[0-9]+ (?:{'|'.join(units)}))")

    return re.sub(_dollars_re, expand_dollars, text)


def text_to_speech(text: str, out_path="data/short_speech.wav"):

    # espnet tts model process '$1.4 trillion' as 'one point four dollar trillion'
    # use this function to fix this issue
    text = normalize_dollars(text)

    output = tts_model(text)
    write(out_path, 22050, output['wav'].numpy())

    return out_path


demo = gr.Blocks(title="Speech Summarization")

demo.encrypt = False

with demo:
    # demo description
    gr.Markdown("""
    ## Speech Summarization with Whisper
    This space is intended to summarize a speech, a short one or long one, to save us sometime 
    (runs faster with GPU inference). Check the example links provided below:
    [3 mins speech](https://www.youtube.com/watch?v=DuX4K4eeTz8), 
    [13 mins speech](https://www.youtube.com/watch?v=nepOSEGHHCQ)
    
    1. Type in a youtube URL or upload an audio file
    2. Generate transcription with Whisper (English Only)
    3. Summarize the transcribed speech
    4. Generate summary's speech with ESPNet model
    
    model references:
    - [Whisper](https://github.com/openai/whisper), [ESPNet](https://github.com/espnet/espnet_model_zoo)
    """)

    # data preparation
    with gr.Row():
        with gr.Column():
            url = gr.Textbox(label="URL", placeholder="video url")

            url_btn = gr.Button("clear")
            url_btn.click(lambda x: '', inputs=url, outputs=url)

        speech = gr.Audio(label="Speech", type="filepath")

        url.change(audio_from_url, inputs=url, outputs=speech)

    examples = gr.Examples(examples=["https://www.youtube.com/watch?v=DuX4K4eeTz8",
                                     "https://www.youtube.com/watch?v=nepOSEGHHCQ"],
                           inputs=[url])

    # ASR
    text = gr.Textbox(label="Transcription", placeholder="transcription")

    with gr.Row():
        default_values = dict(model='base', bs=5, bo=5) if torch.cuda.is_available() \
            else dict(model='tiny', bs=1, bo=1)
        model_options = gr.Dropdown(['Tiny', 'Base'], value=default_values['model'], label="models")
        model_options.change(load_model, inputs=model_options, outputs=model_options)

        beam_size_slider = gr.Slider(1, 10, value=default_values['bs'], step=1, label="param: beam_size")
        best_of_slider = gr.Slider(1, 10, value=default_values['bo'], step=1, label="param: best_of")

    with gr.Row():
        asr_clr_btn = gr.Button("clear")
        asr_clr_btn.click(lambda x: '', inputs=text, outputs=text)
        asr_btn = gr.Button("Recognize Speech")
        asr_btn.click(speech_to_text, inputs=[speech, beam_size_slider, best_of_slider], outputs=text)

    # summarization
    summary = gr.Textbox(label="Summarization")

    with gr.Row():
        sum_clr_btn = gr.Button("clear")
        sum_clr_btn.click(lambda x: '', inputs=summary, outputs=summary)
        sum_btn = gr.Button("Summarize")
        sum_btn.click(text_summarization, inputs=text, outputs=summary)

    with gr.Row():
        # wordcloud
        image = gr.Image(label="wordcloud", show_label=False).style(height=400, width=400)
        with gr.Column():
            tts = gr.Audio(label="Short Speech", type="filepath")
            tts_btn = gr.Button("Read Summary")
            tts_btn.click(text_to_speech, inputs=summary, outputs=tts)

    text.change(wordcloud_func, inputs=text, outputs=image)


if __name__ == '__main__':
    demo.launch()