Jiedong Yang
Update app.py
18d2fb0
raw
history blame
4.01 kB
import os
import time
import whisper
import validators
import gradio as gr
from wordcloud import WordCloud, STOPWORDS
# load whisper model for ASR and BART for summarization
asr_model = whisper.load_model('base.en')
summarizer = gr.Interface.load("facebook/bart-large-cnn", src='huggingface')
def audio_from_url(url, dst_dir='data', name=None, format='wav'):
""" Download video from url and save the audio from video
:param url: str, the video url
:param dst_dir: destination directory for save audio
:param name: audio file's name, if none, assign the name as the video's title
:param format: format type for audio file, such as 'wav', 'mp3'. WAV is preferred.
:return: path of audio
"""
if not validators.url(url):
return None
os.makedirs(dst_dir, exist_ok=True)
# download audio
path = os.path.join(dst_dir, f"audio.{format}")
if os.path.exists(path):
os.remove(path)
os.system(f"yt-dlp -f 'ba' -x --audio-format {format} {url} -o {path} --quiet")
return path
def speech_to_text(audio, beam_size=5, best_of=5, language='en'):
""" ASR inference with Whisper
:param audio:
:param beam_size:
:param best_of:
:param language:
:return:
"""
result = asr_model.transcribe(audio, language=language, beam_size=beam_size, best_of=best_of)
return result['text']
def text_summarization(text):
return summarizer(text)
def wordcloud_func(text: str, out_path='wordcloud_output.png'):
""" generate wordcloud based on text
:param text:
:param out_path:
:return:
"""
if len(text) == 0:
return None
stopwords = STOPWORDS
wc = WordCloud(
background_color='white',
stopwords=stopwords,
height=600,
width=600
)
wc.generate(text)
wc.to_file(out_path)
return out_path
demo = gr.Blocks(title="Speech Summarization")
demo.encrypt = False
with demo:
# demo description
gr.Markdown("""
## Speech Summarization with Whisper
This space is intended to summarize a speech, a short one or long one, to save us sometime.
1. Type in a youtube URL or upload an audio file
2. Generate transcription with Whisper (Currently English Only)
3. Summarize the transcribed speech
4. A little wordcloud for you as well
""")
# data preparation
with gr.Row():
with gr.Column():
url = gr.Textbox(label="URL", placeholder="video url")
url_btn = gr.Button("clear")
url_btn.click(lambda x: '', inputs=url, outputs=url)
speech = gr.Audio(label="Speech", type="filepath")
url.change(audio_from_url, inputs=url, outputs=speech)
# ASR
text = gr.Textbox(label="Transcription", placeholder="transcription")
with gr.Row():
beam_size_slider = gr.Slider(1, 10, value=5, step=1, label="param: beam_size")
best_of_slider = gr.Slider(1, 10, value=5, step=1, label="param: best_of")
with gr.Row():
asr_clr_btn = gr.Button("clear")
asr_clr_btn.click(lambda x: '', inputs=text, outputs=text)
asr_btn = gr.Button("Recognize Speech")
asr_btn.click(speech_to_text, inputs=[speech, beam_size_slider, best_of_slider], outputs=text)
# summarization
summary = gr.Textbox(label="Summarization")
with gr.Row():
sum_clr_btn = gr.Button("clear")
sum_clr_btn.click(lambda x: '', inputs=summary, outputs=summary)
sum_btn = gr.Button("Summarize")
sum_btn.click(text_summarization, inputs=text, outputs=summary)
# wordcloud
image = gr.Image(label="wordcloud", show_label=False).style(height=400, width=400)
text.change(wordcloud_func, inputs=text, outputs=image)
examples = gr.Examples(examples=["https://www.youtube.com/watch?v=DuX4K4eeTz8",
"https://www.youtube.com/watch?v=nepOSEGHHCQ"],
inputs=[url])
if __name__ == '__main__':
demo.launch()