Spaces:
Runtime error
Runtime error
import os | |
os.system('pip install pip --upgrade') | |
os.system('pip install -q git+https://github.com/huggingface/transformers.git') | |
os.system("pip install pyyaml==5.1") | |
# workaround: install old version of pytorch since detectron2 hasn't released packages for pytorch 1.9 (issue: https://github.com/facebookresearch/detectron2/issues/3158) | |
os.system( | |
"pip install torch==1.8.0+cu101 torchvision==0.9.0+cu101 -f https://download.pytorch.org/whl/torch_stable.html" | |
) | |
# install detectron2 that matches pytorch 1.8 | |
# See https://detectron2.readthedocs.io/tutorials/install.html for instructions | |
os.system( | |
"pip install -q detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu101/torch1.8/index.html" | |
) | |
## install PyTesseract | |
os.system("pip install -q pytesseract") | |
import gradio as gr | |
import numpy as np | |
from transformers import LayoutLMv3Processor, LiltForTokenClassification | |
from datasets import load_dataset | |
from PIL import Image, ImageDraw, ImageFont | |
processor = LiltForTokenClassification.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base") | |
model = LayoutLMv3Processor.from_pretrained( | |
"jinhybr/LiLt-funsd-en" | |
) | |
#### | |
#### | |
# load image example | |
dataset = load_dataset("nielsr/funsd-layoutlmv3", split="test") | |
image = Image.open(dataset[0]["image"]).convert("RGB") | |
image = Image.open("./example_lm3.png") | |
image.save("document.png") | |
labels = dataset.features["ner_tags"].feature.names | |
id2label = {v: k for v, k in enumerate(labels)} | |
# helper function to unnormalize bboxes for drawing onto the image | |
def unnormalize_box(bbox, width, height): | |
return [ | |
width * (bbox[0] / 1000), | |
height * (bbox[1] / 1000), | |
width * (bbox[2] / 1000), | |
height * (bbox[3] / 1000), | |
] | |
label2color = { | |
"B-HEADER": "blue", | |
"B-QUESTION": "red", | |
"B-ANSWER": "green", | |
"I-HEADER": "blue", | |
"I-QUESTION": "red", | |
"I-ANSWER": "green", | |
} | |
def iob_to_label(label): | |
label = label[2:] | |
if not label: | |
return "other" | |
return label | |
# draw results onto the image | |
def draw_boxes(image, boxes, predictions): | |
width, height = image.size | |
normalizes_boxes = [unnormalize_box(box, width, height) for box in boxes] | |
# draw predictions over the image | |
draw = ImageDraw.Draw(image) | |
font = ImageFont.load_default() | |
for prediction, box in zip(predictions, normalizes_boxes): | |
if prediction == "O": | |
continue | |
draw.rectangle(box, outline="black") | |
draw.rectangle(box, outline=label2color[prediction]) | |
draw.text((box[0] + 10, box[1] - 10), text=prediction, fill=label2color[prediction], font=font) | |
return image | |
def process_image(image): | |
width, height = image.size | |
# encode | |
encoding = processor( | |
image, truncation=True, return_offsets_mapping=True, return_tensors="pt" | |
) | |
offset_mapping = encoding.pop("offset_mapping") | |
# forward pass | |
outputs = model(**encoding) | |
# get predictions | |
predictions = outputs.logits.argmax(-1).squeeze().tolist() | |
token_boxes = encoding.bbox.squeeze().tolist() | |
# only keep non-subword predictions | |
is_subword = np.array(offset_mapping.squeeze().tolist())[:, 0] != 0 | |
true_predictions = [ | |
id2label[pred] for idx, pred in enumerate(predictions) if not is_subword[idx] | |
] | |
true_boxes = [ | |
unnormalize_box(box, width, height) | |
for idx, box in enumerate(token_boxes) | |
if not is_subword[idx] | |
] | |
draw_boxes(image, true_boxes, true_predictions) | |
'''' # draw predictions over the image | |
draw = ImageDraw.Draw(image) | |
font = ImageFont.load_default() | |
for prediction, box in zip(true_predictions, true_boxes): | |
predicted_label = iob_to_label(prediction).lower() | |
draw.rectangle(box, outline=label2color[predicted_label]) | |
draw.text( | |
(box[0] + 10, box[1] - 10), | |
text=predicted_label, | |
fill=label2color[predicted_label], | |
font=font, | |
) | |
'''' | |
return image | |
title = "OCR Document Parser : Information Extraction - Fine Tuned LiLT Language-independent Layout Transformer Model" | |
description = "Demo for LiLT Language-independent Layout Transformer, a Transformer for state-of-the-art document image understanding tasks. This particular model is fine-tuned on FUNSD, a dataset of manually annotated forms. It annotates the words appearing in the image as QUESTION/ANSWER/HEADER/OTHER. To use it, simply upload an image or use the example image below and click 'Submit'. Results will show up in a few seconds. If you want to make the output bigger, right-click on it and select 'Open image in new tab'." | |
article = "<p style='text-align: center'><a href=' https://arxiv.org/abs/2202.13669' target='_blank'> LiLT Language-independent Layout Transformer</a> | <a href='https://github.com/jpwang/lilt' target='_blank'>Github Repo</a></p>" | |
examples = [["document.png"]] | |
css = ".output-image, .input-image {height: 40rem !important; width: 100% !important;}" | |
# css = "@media screen and (max-width: 600px) { .output_image, .input_image {height:20rem !important; width: 100% !important;} }" | |
# css = ".output_image, .input_image {height: 600px !important}" | |
css = ".image-preview {height: auto !important;}" | |
iface = gr.Interface( | |
fn=process_image, | |
inputs=gr.inputs.Image(type="pil"), | |
outputs=gr.outputs.Image(type="pil", label="annotated image"), | |
title=title, | |
description=description, | |
article=article, | |
examples=examples, | |
css=css, | |
enable_queue=True, | |
) | |
iface.launch(debug=True) |