Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,162 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
import plotly.graph_objects as go
|
3 |
import torch
|
4 |
-
from transformers import AutoModelForTokenClassification
|
|
|
5 |
import requests
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
-
def search_geonames(location):
|
8 |
-
api_endpoint = "http://api.geonames.org/searchJSON"
|
9 |
-
username = "zekun"
|
10 |
|
11 |
-
|
12 |
-
'q': location,
|
13 |
-
'username': username,
|
14 |
-
'maxRows': 5
|
15 |
-
}
|
16 |
|
17 |
-
response = requests.get(api_endpoint, params=params)
|
18 |
-
data = response.json()
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
-
fig.add_trace(go.Scattermapbox(
|
27 |
-
lat=[latitude],
|
28 |
-
lon=[longitude],
|
29 |
-
mode='markers',
|
30 |
-
marker=go.scattermapbox.Marker(
|
31 |
-
size=10,
|
32 |
-
color='orange',
|
33 |
-
),
|
34 |
-
text=[f'Location: {location}'],
|
35 |
-
hoverinfo="text",
|
36 |
-
hovertemplate='<b>Location</b>: %{text}',
|
37 |
-
))
|
38 |
-
|
39 |
-
fig.update_layout(
|
40 |
-
mapbox_style="open-street-map",
|
41 |
-
hovermode='closest',
|
42 |
-
mapbox=dict(
|
43 |
-
bearing=0,
|
44 |
-
center=go.layout.mapbox.Center(
|
45 |
-
lat=latitude,
|
46 |
-
lon=longitude
|
47 |
-
),
|
48 |
-
pitch=0,
|
49 |
-
zoom=2
|
50 |
-
))
|
51 |
-
|
52 |
-
st.plotly_chart(fig)
|
53 |
-
|
54 |
-
# Return an empty figure
|
55 |
-
return go.Figure()
|
56 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
-
def mapping(location):
|
59 |
-
st.write(f"Mapping location: {location}")
|
60 |
|
61 |
-
search_geonames(location)
|
62 |
|
63 |
|
64 |
|
@@ -81,19 +179,23 @@ def generate_human_readable(tokens,labels):
|
|
81 |
return ret
|
82 |
|
83 |
|
84 |
-
|
85 |
-
|
86 |
-
# get the location names:
|
87 |
-
|
88 |
model_name = "zekun-li/geolm-base-toponym-recognition"
|
89 |
|
|
|
90 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
91 |
model = AutoModelForTokenClassification.from_pretrained(model_name)
|
92 |
|
|
|
93 |
tokens = tokenizer.encode(input_sentence, return_tensors="pt")
|
94 |
|
|
|
|
|
95 |
outputs = model(tokens)
|
96 |
|
|
|
|
|
97 |
predicted_labels = torch.argmax(outputs.logits, dim=2)
|
98 |
|
99 |
predicted_labels = predicted_labels.detach().cpu().numpy()
|
@@ -108,27 +210,336 @@ def showOnMap(input_sentence):
|
|
108 |
|
109 |
query_labels = predicted_labels[0][torch.where(predicted_labels[0] != 0)[0]]
|
110 |
|
|
|
111 |
human_readable = generate_human_readable(tokenizer.convert_ids_to_tokens(query_tokens), query_labels)
|
112 |
-
#['Los Angeles', 'L . A .', 'California', 'U . S .', 'Southern California', 'Los Angeles', 'United States', 'New York City']
|
113 |
|
114 |
-
return human_readable
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
|
|
|
116 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
|
118 |
|
119 |
|
120 |
def show_on_map():
|
121 |
|
|
|
|
|
122 |
input = st.text_area("Enter a sentence:", height=200)
|
123 |
|
124 |
st.button("Submit")
|
125 |
|
126 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
|
128 |
-
selected_place = st.selectbox("Select a location:", places)
|
129 |
-
mapping(selected_place)
|
130 |
|
131 |
|
132 |
|
133 |
if __name__ == "__main__":
|
|
|
|
|
|
|
|
|
134 |
show_on_map()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import torch
|
2 |
+
from transformers import AutoTokenizer,AutoModelForTokenClassification
|
3 |
+
from transformers import GeoLMModel
|
4 |
import requests
|
5 |
+
import numpy as np
|
6 |
+
import pandas as pd
|
7 |
+
import scipy.spatial as sp
|
8 |
+
import streamlit as st
|
9 |
+
import folium
|
10 |
+
from streamlit.components.v1 import html
|
11 |
|
|
|
|
|
|
|
12 |
|
13 |
+
from haversine import haversine, Unit
|
|
|
|
|
|
|
|
|
14 |
|
|
|
|
|
15 |
|
16 |
+
dataset=None
|
17 |
+
|
18 |
+
|
19 |
+
def generate_human_readable(tokens,labels):
|
20 |
+
ret = []
|
21 |
+
for t,lab in zip(tokens,labels):
|
22 |
+
if t == '[SEP]':
|
23 |
+
continue
|
24 |
+
|
25 |
+
if t.startswith("##") :
|
26 |
+
assert len(ret) > 0
|
27 |
+
ret[-1] = ret[-1] + t.strip('##')
|
28 |
+
|
29 |
+
elif lab==2:
|
30 |
+
assert len(ret) > 0
|
31 |
+
ret[-1] = ret[-1] + " "+ t.strip('##')
|
32 |
+
else:
|
33 |
+
ret.append(t)
|
34 |
+
|
35 |
+
return ret
|
36 |
+
|
37 |
+
def getSlice(tensor):
|
38 |
+
result = []
|
39 |
+
curr = []
|
40 |
+
for index, value in enumerate(tensor[0]):
|
41 |
+
if value == 1 or value == 2:
|
42 |
+
curr.append(index)
|
43 |
+
|
44 |
+
if value == 0 and curr != []:
|
45 |
+
result.append(curr)
|
46 |
+
curr = []
|
47 |
+
|
48 |
+
return result
|
49 |
+
|
50 |
+
def getIndex(input):
|
51 |
+
|
52 |
+
# Model name from Hugging Face model hub
|
53 |
+
model_name = "zekun-li/geolm-base-toponym-recognition"
|
54 |
+
|
55 |
+
# Load tokenizer and model
|
56 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
57 |
+
model = AutoModelForTokenClassification.from_pretrained(model_name)
|
58 |
+
|
59 |
+
# Tokenize input sentence
|
60 |
+
tokens = tokenizer.encode(input, return_tensors="pt")
|
61 |
+
|
62 |
+
|
63 |
+
# Pass tokens through the model
|
64 |
+
outputs = model(tokens)
|
65 |
+
|
66 |
+
|
67 |
+
# Retrieve predicted labels for each token
|
68 |
+
predicted_labels = torch.argmax(outputs.logits, dim=2)
|
69 |
+
|
70 |
+
predicted_labels = predicted_labels.detach().cpu().numpy()
|
71 |
+
|
72 |
+
# "id2label": { "0": "O", "1": "B-Topo", "2": "I-Topo" }
|
73 |
+
|
74 |
+
predicted_labels = [model.config.id2label[label] for label in predicted_labels[0]]
|
75 |
+
# print(predicted_labels)
|
76 |
+
|
77 |
+
predicted_labels = torch.argmax(outputs.logits, dim=2)
|
78 |
+
|
79 |
+
# print(predicted_labels)
|
80 |
+
|
81 |
+
query_tokens = tokens[0][torch.where(predicted_labels[0] != 0)[0]]
|
82 |
+
|
83 |
+
query_labels = predicted_labels[0][torch.where(predicted_labels[0] != 0)[0]]
|
84 |
+
|
85 |
+
print(predicted_labels)
|
86 |
+
print(predicted_labels.shape)
|
87 |
+
|
88 |
+
slices=getSlice(predicted_labels)
|
89 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
|
91 |
+
# print(tokenizer.convert_ids_to_tokens(query_tokens))
|
92 |
+
|
93 |
+
|
94 |
+
return slices
|
95 |
+
|
96 |
+
def cutSlices(tensor, slicesList):
|
97 |
+
|
98 |
+
locationTensor= torch.zeros(1, len(slicesList), 768)
|
99 |
+
|
100 |
+
curr=0
|
101 |
+
for slice in slicesList:
|
102 |
+
|
103 |
+
if len(slice)==1:
|
104 |
+
locationTensor[0][curr] = tensor[0][slice[0]]
|
105 |
+
curr=curr+1
|
106 |
+
if len(slice)>1 :
|
107 |
+
|
108 |
+
sliceTensor=tensor[0][slice[0]:slice[-1]+1]
|
109 |
+
#(len, 768)-> (1,len, 768)
|
110 |
+
sliceTensor = sliceTensor.unsqueeze(0)
|
111 |
+
|
112 |
+
mean = torch.mean(sliceTensor,dim=1,keepdim=True)
|
113 |
+
|
114 |
+
locationTensor[0][curr] = mean[0]
|
115 |
+
|
116 |
+
curr=curr+1
|
117 |
+
|
118 |
+
|
119 |
+
return locationTensor
|
120 |
+
|
121 |
+
|
122 |
+
|
123 |
+
|
124 |
+
|
125 |
+
|
126 |
+
def MLearningFormInput(input):
|
127 |
+
|
128 |
+
|
129 |
+
model_name = "zekun-li/geolm-base-cased"
|
130 |
+
|
131 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
132 |
+
|
133 |
+
model = GeoLMModel.from_pretrained(model_name)
|
134 |
+
|
135 |
+
tokens = tokenizer.encode(input, return_tensors="pt")
|
136 |
+
|
137 |
+
# ['[CLS]', 'Minneapolis','[SEP]','Saint','Paul','[SEP]','Du','##lut','##h','[SEP]']
|
138 |
+
# print(tokens)
|
139 |
+
|
140 |
+
|
141 |
+
outputs = model(tokens, spatial_position_list_x=torch.zeros(tokens.shape), spatial_position_list_y=torch.zeros(tokens.shape))
|
142 |
+
|
143 |
+
|
144 |
+
# print(outputs.last_hidden_state)
|
145 |
+
|
146 |
+
# print(outputs.last_hidden_state.shape)
|
147 |
+
|
148 |
+
|
149 |
+
slicesIndex=getIndex(input)
|
150 |
+
|
151 |
+
# print(slicesIndex)
|
152 |
+
|
153 |
+
#tensor -> tensor
|
154 |
+
res= cutSlices(outputs.last_hidden_state, slicesIndex)
|
155 |
+
|
156 |
+
|
157 |
+
return res
|
158 |
|
|
|
|
|
159 |
|
|
|
160 |
|
161 |
|
162 |
|
|
|
179 |
return ret
|
180 |
|
181 |
|
182 |
+
def getLocationName(input_sentence):
|
183 |
+
# Model name from Hugging Face model hub
|
|
|
|
|
184 |
model_name = "zekun-li/geolm-base-toponym-recognition"
|
185 |
|
186 |
+
# Load tokenizer and model
|
187 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
188 |
model = AutoModelForTokenClassification.from_pretrained(model_name)
|
189 |
|
190 |
+
# Tokenize input sentence
|
191 |
tokens = tokenizer.encode(input_sentence, return_tensors="pt")
|
192 |
|
193 |
+
|
194 |
+
# Pass tokens through the model
|
195 |
outputs = model(tokens)
|
196 |
|
197 |
+
|
198 |
+
# Retrieve predicted labels for each token
|
199 |
predicted_labels = torch.argmax(outputs.logits, dim=2)
|
200 |
|
201 |
predicted_labels = predicted_labels.detach().cpu().numpy()
|
|
|
210 |
|
211 |
query_labels = predicted_labels[0][torch.where(predicted_labels[0] != 0)[0]]
|
212 |
|
213 |
+
|
214 |
human_readable = generate_human_readable(tokenizer.convert_ids_to_tokens(query_tokens), query_labels)
|
|
|
215 |
|
216 |
+
return human_readable
|
217 |
+
|
218 |
+
|
219 |
+
|
220 |
+
def search_geonames(toponym, df):
|
221 |
+
# GeoNames API endpoint
|
222 |
+
api_endpoint = "http://api.geonames.org/searchJSON"
|
223 |
+
|
224 |
+
username = "zekun"
|
225 |
+
|
226 |
+
print(toponym)
|
227 |
+
|
228 |
+
params = {
|
229 |
+
'q': toponym,
|
230 |
+
'username': username,
|
231 |
+
'maxRows':10
|
232 |
+
}
|
233 |
+
|
234 |
+
response = requests.get(api_endpoint, params=params)
|
235 |
+
data = response.json()
|
236 |
+
|
237 |
+
result = []
|
238 |
+
|
239 |
+
lat=[]
|
240 |
+
lon=[]
|
241 |
+
|
242 |
+
if 'geonames' in data:
|
243 |
+
for place_info in data['geonames']:
|
244 |
+
latitude = float(place_info.get('lat', 0.0))
|
245 |
+
longitude = float(place_info.get('lng', 0.0))
|
246 |
+
|
247 |
+
lat.append(latitude)
|
248 |
+
lon.append(longitude)
|
249 |
+
|
250 |
+
print(latitude)
|
251 |
+
print(longitude)
|
252 |
|
253 |
+
# getNeighborsDistance
|
254 |
|
255 |
+
id = place_info.get('geonameId', '')
|
256 |
+
|
257 |
+
print(id)
|
258 |
+
|
259 |
+
global dataset
|
260 |
+
res = get50Neigbors(id, dataset, k=50)
|
261 |
+
result.append(res)
|
262 |
+
# candidate_places.append({
|
263 |
+
# 'name': place_info.get('name', ''),
|
264 |
+
# 'country': place_info.get('countryName', ''),
|
265 |
+
# 'latitude': latitude,
|
266 |
+
# 'longitude': longitude,
|
267 |
+
|
268 |
+
# })
|
269 |
+
print(res)
|
270 |
+
|
271 |
+
|
272 |
+
df['lat'] = lat
|
273 |
+
df['lon'] = lon
|
274 |
+
result = torch.cat(result, dim=1).detach().numpy()
|
275 |
+
return result
|
276 |
+
|
277 |
+
|
278 |
+
|
279 |
+
def get50Neigbors(locationID, dataset, k=50):
|
280 |
+
|
281 |
+
input_row = dataset.loc[dataset['GeonameID'] == locationID].iloc[0]
|
282 |
+
|
283 |
+
|
284 |
+
lat, lon, geohash,name = input_row['Latitude'], input_row['Longitude'], input_row['Geohash'], input_row['Name']
|
285 |
+
|
286 |
+
filtered_dataset = dataset.loc[dataset['Geohash'].str.startswith(geohash[:5])].copy()
|
287 |
+
|
288 |
+
filtered_dataset['distance'] = filtered_dataset.apply(
|
289 |
+
lambda row: haversine((lat, lon), (row['Latitude'], row['Longitude']), Unit.KILOMETERS),
|
290 |
+
axis=1
|
291 |
+
).copy()
|
292 |
+
|
293 |
+
|
294 |
+
filtered_dataset = filtered_dataset.sort_values(by='distance')
|
295 |
+
|
296 |
+
|
297 |
+
|
298 |
+
nearest_neighbors = filtered_dataset.head(k)[['Name']]
|
299 |
+
|
300 |
+
|
301 |
+
neighbors=nearest_neighbors.values.tolist()
|
302 |
+
|
303 |
+
|
304 |
+
model_name = "zekun-li/geolm-base-toponym-recognition"
|
305 |
+
|
306 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
307 |
+
|
308 |
+
sep_token_id = tokenizer.convert_tokens_to_ids(tokenizer.sep_token)
|
309 |
+
cls_token_id = tokenizer.convert_tokens_to_ids(tokenizer.cls_token)
|
310 |
+
|
311 |
+
|
312 |
+
neighbor_token_list = []
|
313 |
+
neighbor_token_list.append(cls_token_id)
|
314 |
+
|
315 |
+
target_token=tokenizer.convert_tokens_to_ids(tokenizer.tokenize(name))
|
316 |
+
|
317 |
+
|
318 |
+
|
319 |
+
for neighbor in neighbors:
|
320 |
+
|
321 |
+
|
322 |
+
neighbor_token = tokenizer.convert_tokens_to_ids(tokenizer.tokenize(neighbor[0]))
|
323 |
+
neighbor_token_list.extend(neighbor_token)
|
324 |
+
neighbor_token_list.append(sep_token_id)
|
325 |
+
|
326 |
+
|
327 |
+
# print(tokenizer.convert_ids_to_tokens(neighbor_token_list))
|
328 |
+
|
329 |
+
#--------------------------------------------
|
330 |
+
|
331 |
+
model = GeoLMModel.from_pretrained(model_name)
|
332 |
+
|
333 |
+
|
334 |
+
tokens = torch.Tensor(neighbor_token_list).unsqueeze(0).long()
|
335 |
+
|
336 |
+
|
337 |
+
# input "new neighbor sentence"-> model -> output
|
338 |
+
outputs = model(tokens, spatial_position_list_x=torch.zeros(tokens.shape), spatial_position_list_y=torch.zeros(tokens.shape))
|
339 |
+
|
340 |
+
|
341 |
+
|
342 |
+
# print(outputs.last_hidden_state)
|
343 |
+
|
344 |
+
# print(outputs.last_hidden_state.shape)
|
345 |
+
|
346 |
+
|
347 |
+
targetIndex=list(range(1, len(target_token)+1))
|
348 |
+
|
349 |
+
# #tensor -> tensor
|
350 |
+
# get (1, len(target_token), 768) -> (1, 1, 768)
|
351 |
+
res=cutSlices(outputs.last_hidden_state, [targetIndex])
|
352 |
+
|
353 |
+
|
354 |
+
return res
|
355 |
+
|
356 |
+
|
357 |
+
|
358 |
+
def cosine_similarity(target_feature, candidate_feature):
|
359 |
+
|
360 |
+
target_feature = target_feature.squeeze()
|
361 |
+
candidate_feature = candidate_feature.squeeze()
|
362 |
+
|
363 |
+
dot_product = torch.dot(target_feature, candidate_feature)
|
364 |
+
|
365 |
+
target = torch.norm(target_feature)
|
366 |
+
candidate = torch.norm(candidate_feature)
|
367 |
+
|
368 |
+
similarity = dot_product / (target * candidate)
|
369 |
+
|
370 |
+
return similarity.item()
|
371 |
+
|
372 |
+
|
373 |
+
@st.cache_data
|
374 |
+
|
375 |
+
def getCSV():
|
376 |
+
dataset = pd.read_csv('geohash.csv')
|
377 |
+
|
378 |
+
return dataset
|
379 |
+
|
380 |
+
def showing(df):
|
381 |
+
|
382 |
+
m = folium.Map(location=[df['lat'].mean(), df['lon'].mean()], zoom_start=5)
|
383 |
+
|
384 |
+
size_scale = 100
|
385 |
+
color_scale = 255
|
386 |
+
|
387 |
+
for i in range(len(df)):
|
388 |
+
lat, lon, prob = df.iloc[i]['lat'], df.iloc[i]['lon'], df.iloc[i]['prob']
|
389 |
+
|
390 |
+
size = int(prob**2 * size_scale )
|
391 |
+
color = int(prob**2 * color_scale)
|
392 |
+
|
393 |
+
folium.CircleMarker(
|
394 |
+
location=[lat, lon],
|
395 |
+
radius=size,
|
396 |
+
color=f'#{color:02X}0000',
|
397 |
+
fill=True,
|
398 |
+
fill_color=f'#{color:02X}0000'
|
399 |
+
).add_to(m)
|
400 |
+
|
401 |
+
m.save("map.html")
|
402 |
+
|
403 |
+
with open("map.html", "r", encoding="utf-8") as f:
|
404 |
+
map_html = f.read()
|
405 |
+
|
406 |
+
st.components.v1.html(map_html, height=600)
|
407 |
+
|
408 |
+
|
409 |
+
def mapping(selected_place,locations, sentence_info):
|
410 |
+
location_index = locations.index(selected_place)
|
411 |
+
print(location_index)
|
412 |
+
|
413 |
+
df = pd.DataFrame()
|
414 |
+
|
415 |
+
# get same name for "Beijing" in geonames
|
416 |
+
same_name_embedding=search_geonames(selected_place, df)
|
417 |
+
|
418 |
+
|
419 |
+
sim_matrix=[]
|
420 |
+
print(sim_matrix)
|
421 |
+
|
422 |
+
|
423 |
+
same_name_embedding=torch.tensor(same_name_embedding)
|
424 |
+
# loop each "Beijing"
|
425 |
+
for i in range(same_name_embedding.size(1)):
|
426 |
+
print((sentence_info[:, location_index, :]).shape)
|
427 |
+
print((same_name_embedding[:, i, :]).shape)
|
428 |
+
|
429 |
+
similarities = cosine_similarity(sentence_info[:, location_index, :], same_name_embedding[:, i, :])
|
430 |
+
sim_matrix.append(similarities)
|
431 |
+
|
432 |
+
# print("Cosine Similarity Matrix:")
|
433 |
+
# print(sim_matrix)
|
434 |
+
|
435 |
+
def sigmoid(x):
|
436 |
+
return 1 / (1 + np.exp(-x))
|
437 |
+
|
438 |
+
prob_matrix = sigmoid(np.array(sim_matrix))
|
439 |
+
|
440 |
+
|
441 |
+
df['prob'] = prob_matrix
|
442 |
+
|
443 |
+
|
444 |
+
print(df)
|
445 |
+
|
446 |
+
showing(df)
|
447 |
|
448 |
|
449 |
|
450 |
def show_on_map():
|
451 |
|
452 |
+
|
453 |
+
|
454 |
input = st.text_area("Enter a sentence:", height=200)
|
455 |
|
456 |
st.button("Submit")
|
457 |
|
458 |
+
sentence_info= MLearningFormInput(input)
|
459 |
+
|
460 |
+
print("sentence info: ")
|
461 |
+
print(sentence_info)
|
462 |
+
print(sentence_info.shape)
|
463 |
+
|
464 |
+
|
465 |
+
# input: a sentence -> output : locations
|
466 |
+
locations=getLocationName(input)
|
467 |
+
|
468 |
+
# 1. input: a sentence -> output: tensor (1sentence_info
|
469 |
+
selected_place = st.selectbox("Select a location:", locations)
|
470 |
+
|
471 |
+
if selected_place is not None:
|
472 |
+
|
473 |
+
mapping(selected_place, locations, sentence_info)
|
474 |
|
|
|
|
|
475 |
|
476 |
|
477 |
|
478 |
if __name__ == "__main__":
|
479 |
+
|
480 |
+
|
481 |
+
dataset = getCSV()
|
482 |
+
|
483 |
show_on_map()
|
484 |
+
|
485 |
+
|
486 |
+
# # can be hidding.............................................................
|
487 |
+
|
488 |
+
# #len: 80
|
489 |
+
# input= 'Minneapolis, officially the City of Minneapolis, is a city in the state of Minnesota and the county seat of Hennepin County. making it the largest city in Minnesota and the 46th-most-populous in the United States. Nicknamed the "City of Lakes", Minneapolis is abundant in water, with thirteen lakes, wetlands, the Mississippi River, creeks, and waterfalls.'
|
490 |
+
|
491 |
+
|
492 |
+
# 1. input: a sentence -> output: tensor (1,num_locations,768)
|
493 |
+
# sentence_info= MLearningFormInput(input)
|
494 |
+
|
495 |
+
# print("sentence info: ")
|
496 |
+
# print(sentence_info)
|
497 |
+
# print(sentence_info.shape)
|
498 |
+
|
499 |
+
|
500 |
+
|
501 |
+
# # input: a sentence -> output : locations
|
502 |
+
# locations=getLocationName(input)
|
503 |
+
|
504 |
+
# print(locations)
|
505 |
+
|
506 |
+
# j=0
|
507 |
+
|
508 |
+
|
509 |
+
# k=0
|
510 |
+
|
511 |
+
# for location in locations:
|
512 |
+
|
513 |
+
# if k==0:
|
514 |
+
|
515 |
+
# # input: locations -> output: search in geoname(get top 10 items) -> loop each item -> num_location x 10 x (1,1,768)
|
516 |
+
# same_name_embedding=search_geonames(location)
|
517 |
+
|
518 |
+
# sim_matrix=[]
|
519 |
+
# print(sim_matrix)
|
520 |
+
|
521 |
+
|
522 |
+
|
523 |
+
|
524 |
+
|
525 |
+
# same_name_embedding=torch.tensor(same_name_embedding)
|
526 |
+
# # loop each "Beijing"
|
527 |
+
# for i in range(same_name_embedding.size(1)):
|
528 |
+
# # print((sentence_info[:, j, :]).shape)
|
529 |
+
# # print((same_name_embedding[:, i, :]).shape)
|
530 |
+
|
531 |
+
# similarities = cosine_similarity(sentence_info[:, j, :], same_name_embedding[:, i, :])
|
532 |
+
# sim_matrix.append(similarities)
|
533 |
+
|
534 |
+
|
535 |
+
|
536 |
+
# j=j+1
|
537 |
+
|
538 |
+
|
539 |
+
# print("Cosine Similarity Matrix:")
|
540 |
+
# print(sim_matrix)
|
541 |
+
|
542 |
+
# k=1
|
543 |
+
|
544 |
+
# else:
|
545 |
+
# break
|