Spaces:
Runtime error
Runtime error
File size: 6,540 Bytes
f5f3b58 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
import face_recognition
import cv2
import numpy as np
import os
import pickle
# This is a demo of running face recognition on live video from your webcam. It's a little more complicated than the
# other example, but it includes some basic performance tweaks to make things run a lot faster:
# 1. Process each video frame at 1/4 resolution (though still display it at full resolution)
# 2. Only detect faces in every other frame of video.
# PLEASE NOTE: This example requires OpenCV (the `cv2` library) to be installed only to read from your webcam.
# OpenCV is *not* required to use the face_recognition library. It's only required if you want to run this
# specific demo. If you have trouble installing it, try any of the other demos that don't require it instead.
# Get a reference to webcam #0 (the default one)
def get_emb(file_name):
if os.path.exists(file_name):
file_ = face_recognition.load_image_file(file_name)
emb = face_recognition.face_encodings(file_)[0]
np.save(file_name.replace(".jpg",'.npy'), emb)
else:
emb = np.load(file_name)
return emb
def input_an_image(image_file, person_name, ori_img_dir='images/ori_images',img_emb_dir='images/img_emb'):
image_file_dir=os.path.join(ori_img_dir,person_name)
emb_file_dir=os.path.join(img_emb_dir,person_name)
if not os.path.exists(image_file_dir):
os.mkdir(image_file_dir)
os.mkdir(emb_file_dir)
file_ind=0
else:
file_ind=len(os.listdir(image_file_dir))
file_ = face_recognition.load_image_file(image_file)
emb = face_recognition.face_encodings(file_)[0]
emb_file=image_file.split('.')[0]+f'_{file_ind}.npy'
emb_file_out_path=os.path.join(emb_file_dir,emb_file)
np.save(emb_file_out_path, emb)
return emb
def init_load_embs(img_emb_dir='images/img_emb'):
persons=os.listdir(img_emb_dir)
i=0
ind2person=dict()
for oneperson in persons:
oneperson_dir=os.path.join(img_emb_dir,oneperson)
oneperson_list=os.listdir(oneperson_dir)
for oneperson_j in oneperson_list:
emb_id=i
i+=1
emb=np.load(os.path.join(oneperson_dir,oneperson_j))
ind2person[emb_id]=dict(person=oneperson,emb=emb)
return ind2person
if __name__=="__main__":
ind2person=init_load_embs()
video_capture = cv2.VideoCapture(0)
emb=input_an_image('youpeng.jpg', "youpeng")
ind2person[len(list(ind2person.values()))]=dict(person="youpeng",emb=emb)
# img_emb_dir='images/img_emb'
# ori_img_dir='images/ori_images'
# if not os.path.exists(img_emb_dir):
# os.mkdir(img_emb_dir)
# if not os.path.exists(ori_img_dir):
# os.mkdir(ori_img_dir)
# # os.listdir()
# Load a sample picture and learn how to recognize it.
# file_list=["obama.jpg","biden.jpg","mengqi.jpg","xinyi.jpg","sixian.jpg","wang.jpg","chenmengqi.jpg",'yilin.jpg','youpeng.jpg','wangyibo.jpg']
# Create arrays of known face encodings and their names
# known_face_encodings = [
# obama_face_encoding,
# biden_face_encoding,
# me_face_encoding,
# wang_face_encoding
# ]
# known_face_names = [
# "Barack Obama",
# "Joe Biden",
# "me",
# "wang"
# ]
known_face_encodings=[v['emb'] for k,v in ind2person.items()]
# known_face_encodings=[get_emb(f) for f in file_list]
# known_face_names=[st.replace('.jpg','')for st in file_list]
# Initialize some variables
face_locations = []
face_encodings = []
face_names = []
process_this_frame = True
while True:
# Grab a single frame of video
ret, frame = video_capture.read()
# Only process every other frame of video to save time
if process_this_frame:
# Resize frame of video to 1/4 size for faster face recognition processing
small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)
# Convert the image from BGR color (which OpenCV uses) to RGB color (which face_recognition uses)
rgb_small_frame = small_frame[:, :, ::-1]
# Find all the faces and face encodings in the current frame of video
face_locations = face_recognition.face_locations(rgb_small_frame, number_of_times_to_upsample=1)#, model="cnn")
face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations)
face_names = []
for face_encoding in face_encodings:
# See if the face is a match for the known face(s)
matches = face_recognition.compare_faces(known_face_encodings, face_encoding)
name = "Unknown"
# # If a match was found in known_face_encodings, just use the first one.
# if True in matches:
# first_match_index = matches.index(True)
# name = known_face_names[first_match_index]
# Or instead, use the known face with the smallest distance to the new face
face_distances = face_recognition.face_distance(known_face_encodings, face_encoding)
best_match_index = np.argmin(face_distances)
if matches[best_match_index]:
# name = known_face_names[best_match_index]
name = ind2person[best_match_index]['person']
face_names.append(name)
process_this_frame = not process_this_frame
# Display the results
for (top, right, bottom, left), name in zip(face_locations, face_names):
# Scale back up face locations since the frame we detected in was scaled to 1/4 size
top *= 4
right *= 4
bottom *= 4
left *= 4
# Draw a box around the face
cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2)
# Draw a label with a name below the face
cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2.FILLED)
font = cv2.FONT_HERSHEY_DUPLEX
cv2.putText(frame, name, (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1)
# Display the resulting image
cv2.imshow('Video', frame)
# Hit 'q' on the keyboard to quit!
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# Release handle to the webcam
video_capture.release()
cv2.destroyAllWindows() |