Spaces:
Runtime error
Runtime error
import face_recognition | |
import os | |
import numpy as np | |
from PIL import Image | |
import random | |
import cv2 | |
def update_ind2person(ind2person, emb, person): | |
ind2person[len(list(ind2person.values()))]=dict(person=person,emb=emb) | |
print(f"dict ind2person update: {person}!!!") | |
return ind2person | |
def input_an_image(image, person_name, ori_img_dir='images/ori_images',img_emb_dir='images/img_emb', save_ori_img=True): | |
""" | |
args: | |
image: PIL Image | |
person_name: str | |
""" | |
image_file_dir=os.path.join(ori_img_dir,person_name) | |
emb_file_dir=os.path.join(img_emb_dir,person_name) | |
if not os.path.exists(image_file_dir): | |
os.mkdir(image_file_dir) | |
os.mkdir(emb_file_dir) | |
file_ind=0 | |
else: | |
file_ind=len(os.listdir(image_file_dir)) | |
# file_ = face_recognition.load_image_file(image_file) | |
if save_ori_img: | |
image.save(os.path.join(image_file_dir,person_name+f'_{file_ind}.jpg')) | |
file_ = np.array(image) | |
emb = face_recognition.face_encodings(file_)[0] | |
emb_file=person_name+f'_{file_ind}.npy' | |
emb_file_out_path=os.path.join(emb_file_dir,emb_file) | |
np.save(emb_file_out_path, emb) | |
return emb | |
def init_load_embs(img_emb_dir='images/img_emb'): | |
persons=os.listdir(img_emb_dir) | |
i=0 | |
ind2person=dict() | |
for oneperson in persons: | |
oneperson_dir=os.path.join(img_emb_dir,oneperson) | |
oneperson_list=os.listdir(oneperson_dir) | |
for oneperson_j in oneperson_list: | |
emb_id=i | |
i+=1 | |
emb=np.load(os.path.join(oneperson_dir,oneperson_j)) | |
ind2person[emb_id]=dict(person=oneperson,emb=emb) | |
return ind2person | |
def image_rec(image, known_face_encodings, _ind2person): | |
""" | |
args: | |
image: cv2 format | |
return: | |
image: cv2 format | |
""" | |
# image = np.array(image) | |
face_locations = face_recognition.face_locations(image) | |
face_encodings = face_recognition.face_encodings(image, face_locations) | |
face_names = [] | |
for face_encoding in face_encodings: | |
# See if the face is a match for the known face(s) | |
matches = face_recognition.compare_faces(known_face_encodings, face_encoding) | |
name = "Unknown" | |
# # If a match was found in known_face_encodings, just use the first one. | |
# if True in matches: | |
# first_match_index = matches.index(True) | |
# name = known_face_names[first_match_index] | |
# Or instead, use the known face with the smallest distance to the new face | |
face_distances = face_recognition.face_distance(known_face_encodings, face_encoding) | |
best_match_index = np.argmin(face_distances) | |
if matches[best_match_index]: | |
name = _ind2person[best_match_index]['person'] | |
print(f"rec {name}!!") | |
face_names.append(name) | |
nameset = list(set(face_names)) | |
colors=[(255,0,0),(0,255,0),(0,0,255),(0,255,255),(255,255,0),(156,102,31),(255,0,255)] | |
chose_colors = random.sample(colors,len(nameset)) | |
name2color={_n:chose_colors[i] for i,_n in enumerate(nameset)} | |
print(name2color) | |
for (top, right, bottom, left), name in zip(face_locations, face_names): | |
# Scale back up face locations since the frame we detected in was scaled to 1/4 size | |
# top *= 4 | |
# right *= 4 | |
# bottom *= 4 | |
# left *= 4 | |
print("detect image") | |
# Draw a box around the face | |
# cv2.rectangle(image, (left, top), (right, bottom), (0, 0, 255), 2) | |
cv2.rectangle(image, (left, top), (right, bottom), name2color[name], 2) | |
# Draw a label with a name below the face | |
# cv2.rectangle(image, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2.FILLED) | |
# cv2.rectangle(image, (left, bottom - 35), (right, bottom), name2color[name], cv2.FILLED) | |
font = cv2.FONT_HERSHEY_DUPLEX | |
cv2.putText(image, name, (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1) | |
# cv2.imshow('image', image) | |
# cv2.waitKey() | |
return image |