import face_recognition import os import numpy as np from PIL import Image import random import cv2 def update_ind2person(ind2person, emb, person): ind2person[len(list(ind2person.values()))]=dict(person=person,emb=emb) print(f"dict ind2person update: {person}!!!") return ind2person def input_an_image(image, person_name, ori_img_dir='images/ori_images',img_emb_dir='images/img_emb', save_ori_img=True): """ args: image: PIL Image person_name: str """ image_file_dir=os.path.join(ori_img_dir,person_name) emb_file_dir=os.path.join(img_emb_dir,person_name) if not os.path.exists(image_file_dir): os.mkdir(image_file_dir) os.mkdir(emb_file_dir) file_ind=0 else: file_ind=len(os.listdir(image_file_dir)) # file_ = face_recognition.load_image_file(image_file) if save_ori_img: image.save(os.path.join(image_file_dir,person_name+f'_{file_ind}.jpg')) file_ = np.array(image) emb = face_recognition.face_encodings(file_)[0] emb_file=person_name+f'_{file_ind}.npy' emb_file_out_path=os.path.join(emb_file_dir,emb_file) np.save(emb_file_out_path, emb) return emb def init_load_embs(img_emb_dir='images/img_emb'): persons=os.listdir(img_emb_dir) i=0 ind2person=dict() for oneperson in persons: oneperson_dir=os.path.join(img_emb_dir,oneperson) oneperson_list=os.listdir(oneperson_dir) for oneperson_j in oneperson_list: emb_id=i i+=1 emb=np.load(os.path.join(oneperson_dir,oneperson_j)) ind2person[emb_id]=dict(person=oneperson,emb=emb) return ind2person def image_rec(image, known_face_encodings, _ind2person): """ args: image: cv2 format return: image: cv2 format """ # image = np.array(image) face_locations = face_recognition.face_locations(image) face_encodings = face_recognition.face_encodings(image, face_locations) face_names = [] for face_encoding in face_encodings: # See if the face is a match for the known face(s) matches = face_recognition.compare_faces(known_face_encodings, face_encoding) name = "Unknown" # # If a match was found in known_face_encodings, just use the first one. # if True in matches: # first_match_index = matches.index(True) # name = known_face_names[first_match_index] # Or instead, use the known face with the smallest distance to the new face face_distances = face_recognition.face_distance(known_face_encodings, face_encoding) best_match_index = np.argmin(face_distances) if matches[best_match_index]: name = _ind2person[best_match_index]['person'] print(f"rec {name}!!") face_names.append(name) nameset = list(set(face_names)) colors=[(255,0,0),(0,255,0),(0,0,255),(0,255,255),(255,255,0),(156,102,31),(255,0,255)] chose_colors = random.sample(colors,len(nameset)) name2color={_n:chose_colors[i] for i,_n in enumerate(nameset)} print(name2color) for (top, right, bottom, left), name in zip(face_locations, face_names): # Scale back up face locations since the frame we detected in was scaled to 1/4 size # top *= 4 # right *= 4 # bottom *= 4 # left *= 4 print("detect image") # Draw a box around the face # cv2.rectangle(image, (left, top), (right, bottom), (0, 0, 255), 2) cv2.rectangle(image, (left, top), (right, bottom), name2color[name], 2) # Draw a label with a name below the face # cv2.rectangle(image, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2.FILLED) # cv2.rectangle(image, (left, bottom - 35), (right, bottom), name2color[name], cv2.FILLED) font = cv2.FONT_HERSHEY_DUPLEX cv2.putText(image, name, (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1) # cv2.imshow('image', image) # cv2.waitKey() return image