Spaces:
Running
on
Zero
Running
on
Zero
from typing import Tuple, Optional | |
import gradio as gr | |
import supervision as sv | |
import torch | |
from PIL import Image | |
from utils.florence import load_florence_model, run_florence_inference, \ | |
FLORENCE_DETAILED_CAPTION_TASK, \ | |
FLORENCE_CAPTION_TO_PHRASE_GROUNDING_TASK, FLORENCE_OPEN_VOCABULARY_DETECTION_TASK | |
from utils.modes import INFERENCE_MODES, OPEN_VOCABULARY_DETECTION, \ | |
CAPTION_GROUNDING_MASKS | |
from utils.sam import load_sam_model, run_sam_inference | |
MARKDOWN = """ | |
# Florence2 + SAM2 🔥 | |
<div> | |
<a href="https://github.com/facebookresearch/segment-anything-2"> | |
<img src="https://badges.aleen42.com/src/github.svg" alt="GitHub" style="display:inline-block;"> | |
</a> | |
<a href="https://colab.research.google.com/github/roboflow-ai/notebooks/blob/main/notebooks/how-to-segment-images-with-sam-2.ipynb"> | |
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Colab" style="display:inline-block;"> | |
</a> | |
<a href="https://blog.roboflow.com/what-is-segment-anything-2/"> | |
<img src="https://raw.githubusercontent.com/roboflow-ai/notebooks/main/assets/badges/roboflow-blogpost.svg" alt="Roboflow" style="display:inline-block;"> | |
</a> | |
<a href="https://www.youtube.com/watch?v=Dv003fTyO-Y"> | |
<img src="https://badges.aleen42.com/src/youtube.svg" alt="YouTube" style="display:inline-block;"> | |
</a> | |
</div> | |
This demo integrates Florence2 and SAM2 by creating a two-stage inference pipeline. In | |
the first stage, Florence2 performs tasks such as object detection, open-vocabulary | |
object detection, image captioning, or phrase grounding. In the second stage, SAM2 | |
performs object segmentation on the image. **Video segmentation will be available | |
soon.** | |
""" | |
EXAMPLES = [ | |
[OPEN_VOCABULARY_DETECTION, "https://media.roboflow.com/notebooks/examples/dog-2.jpeg", 'straw'], | |
[OPEN_VOCABULARY_DETECTION, "https://media.roboflow.com/notebooks/examples/dog-2.jpeg", 'napkin'], | |
[OPEN_VOCABULARY_DETECTION, "https://media.roboflow.com/notebooks/examples/dog-3.jpeg", 'tail'], | |
[CAPTION_GROUNDING_MASKS, "https://media.roboflow.com/notebooks/examples/dog-2.jpeg", None], | |
[CAPTION_GROUNDING_MASKS, "https://media.roboflow.com/notebooks/examples/dog-3.jpeg", None], | |
] | |
DEVICE = torch.device("cuda") | |
FLORENCE_MODEL, FLORENCE_PROCESSOR = load_florence_model(device=DEVICE) | |
SAM_MODEL = load_sam_model(device=DEVICE) | |
BOX_ANNOTATOR = sv.BoxAnnotator(color_lookup=sv.ColorLookup.INDEX) | |
LABEL_ANNOTATOR = sv.LabelAnnotator( | |
color_lookup=sv.ColorLookup.INDEX, | |
text_position=sv.Position.CENTER_OF_MASS, | |
text_color=sv.Color.from_hex("#FFFFFF"), | |
border_radius=5 | |
) | |
MASK_ANNOTATOR = sv.MaskAnnotator(color_lookup=sv.ColorLookup.INDEX) | |
def annotate_image(image, detections): | |
output_image = image.copy() | |
output_image = MASK_ANNOTATOR.annotate(output_image, detections) | |
output_image = BOX_ANNOTATOR.annotate(output_image, detections) | |
output_image = LABEL_ANNOTATOR.annotate(output_image, detections) | |
return output_image | |
def on_mode_dropdown_change(text): | |
return [ | |
gr.Textbox(visible=text == OPEN_VOCABULARY_DETECTION), | |
gr.Textbox(visible=text == CAPTION_GROUNDING_MASKS), | |
] | |
def process( | |
mode_dropdown, image_input, text_input | |
) -> Tuple[Optional[Image.Image], Optional[str]]: | |
if not image_input: | |
return None, None | |
if mode_dropdown == OPEN_VOCABULARY_DETECTION: | |
if not text_input: | |
return None, None | |
_, result = run_florence_inference( | |
model=FLORENCE_MODEL, | |
processor=FLORENCE_PROCESSOR, | |
device=DEVICE, | |
image=image_input, | |
task=FLORENCE_OPEN_VOCABULARY_DETECTION_TASK, | |
text=text_input | |
) | |
detections = sv.Detections.from_lmm( | |
lmm=sv.LMM.FLORENCE_2, | |
result=result, | |
resolution_wh=image_input.size | |
) | |
detections = run_sam_inference(SAM_MODEL, image_input, detections) | |
return annotate_image(image_input, detections), None | |
if mode_dropdown == CAPTION_GROUNDING_MASKS: | |
_, result = run_florence_inference( | |
model=FLORENCE_MODEL, | |
processor=FLORENCE_PROCESSOR, | |
device=DEVICE, | |
image=image_input, | |
task=FLORENCE_DETAILED_CAPTION_TASK | |
) | |
caption = result[FLORENCE_DETAILED_CAPTION_TASK] | |
_, result = run_florence_inference( | |
model=FLORENCE_MODEL, | |
processor=FLORENCE_PROCESSOR, | |
device=DEVICE, | |
image=image_input, | |
task=FLORENCE_CAPTION_TO_PHRASE_GROUNDING_TASK, | |
text=caption | |
) | |
detections = sv.Detections.from_lmm( | |
lmm=sv.LMM.FLORENCE_2, | |
result=result, | |
resolution_wh=image_input.size | |
) | |
detections = run_sam_inference(SAM_MODEL, image_input, detections) | |
return annotate_image(image_input, detections), caption | |
with gr.Blocks() as demo: | |
gr.Markdown(MARKDOWN) | |
mode_dropdown_component = gr.Dropdown( | |
choices=INFERENCE_MODES, | |
value=INFERENCE_MODES[0], | |
label="Mode", | |
info="Select a mode to use.", | |
interactive=True | |
) | |
with gr.Row(): | |
with gr.Column(): | |
image_input_component = gr.Image( | |
type='pil', label='Upload image') | |
text_input_component = gr.Textbox( | |
label='Text prompt') | |
submit_button_component = gr.Button(value='Submit', variant='primary') | |
with gr.Column(): | |
image_output_component = gr.Image(type='pil', label='Image output') | |
text_output_component = gr.Textbox(label='Caption output', visible=False) | |
with gr.Row(): | |
gr.Examples( | |
fn=process, | |
examples=EXAMPLES, | |
inputs=[ | |
mode_dropdown_component, | |
image_input_component, | |
text_input_component | |
], | |
outputs=[ | |
image_output_component, | |
text_output_component | |
], | |
run_on_click=True | |
) | |
submit_button_component.click( | |
fn=process, | |
inputs=[ | |
mode_dropdown_component, | |
image_input_component, | |
text_input_component | |
], | |
outputs=[ | |
image_output_component, | |
text_output_component | |
] | |
) | |
mode_dropdown_component.change( | |
on_mode_dropdown_change, | |
inputs=[mode_dropdown_component], | |
outputs=[ | |
text_input_component, | |
text_output_component | |
] | |
) | |
demo.launch(debug=False, show_error=True) | |