SkalskiP's picture
markdown improvements
ae5c0ef
raw
history blame
6.67 kB
from typing import Tuple, Optional
import gradio as gr
import supervision as sv
import torch
from PIL import Image
from utils.florence import load_florence_model, run_florence_inference, \
FLORENCE_DETAILED_CAPTION_TASK, \
FLORENCE_CAPTION_TO_PHRASE_GROUNDING_TASK, FLORENCE_OPEN_VOCABULARY_DETECTION_TASK
from utils.modes import INFERENCE_MODES, OPEN_VOCABULARY_DETECTION, \
CAPTION_GROUNDING_MASKS
from utils.sam import load_sam_model, run_sam_inference
MARKDOWN = """
# Florence2 + SAM2 🔥
<div>
<a href="https://github.com/facebookresearch/segment-anything-2">
<img src="https://badges.aleen42.com/src/github.svg" alt="GitHub" style="display:inline-block;">
</a>
<a href="https://colab.research.google.com/github/roboflow-ai/notebooks/blob/main/notebooks/how-to-segment-images-with-sam-2.ipynb">
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Colab" style="display:inline-block;">
</a>
<a href="https://blog.roboflow.com/what-is-segment-anything-2/">
<img src="https://raw.githubusercontent.com/roboflow-ai/notebooks/main/assets/badges/roboflow-blogpost.svg" alt="Roboflow" style="display:inline-block;">
</a>
<a href="https://www.youtube.com/watch?v=Dv003fTyO-Y">
<img src="https://badges.aleen42.com/src/youtube.svg" alt="YouTube" style="display:inline-block;">
</a>
</div>
This demo integrates Florence2 and SAM2 by creating a two-stage inference pipeline. In
the first stage, Florence2 performs tasks such as object detection, open-vocabulary
object detection, image captioning, or phrase grounding. In the second stage, SAM2
performs object segmentation on the image. **Video segmentation will be available
soon.**
"""
EXAMPLES = [
[OPEN_VOCABULARY_DETECTION, "https://media.roboflow.com/notebooks/examples/dog-2.jpeg", 'straw'],
[OPEN_VOCABULARY_DETECTION, "https://media.roboflow.com/notebooks/examples/dog-2.jpeg", 'napkin'],
[OPEN_VOCABULARY_DETECTION, "https://media.roboflow.com/notebooks/examples/dog-3.jpeg", 'tail'],
[CAPTION_GROUNDING_MASKS, "https://media.roboflow.com/notebooks/examples/dog-2.jpeg", None],
[CAPTION_GROUNDING_MASKS, "https://media.roboflow.com/notebooks/examples/dog-3.jpeg", None],
]
DEVICE = torch.device("cuda")
FLORENCE_MODEL, FLORENCE_PROCESSOR = load_florence_model(device=DEVICE)
SAM_MODEL = load_sam_model(device=DEVICE)
BOX_ANNOTATOR = sv.BoxAnnotator(color_lookup=sv.ColorLookup.INDEX)
LABEL_ANNOTATOR = sv.LabelAnnotator(
color_lookup=sv.ColorLookup.INDEX,
text_position=sv.Position.CENTER_OF_MASS,
text_color=sv.Color.from_hex("#FFFFFF"),
border_radius=5
)
MASK_ANNOTATOR = sv.MaskAnnotator(color_lookup=sv.ColorLookup.INDEX)
def annotate_image(image, detections):
output_image = image.copy()
output_image = MASK_ANNOTATOR.annotate(output_image, detections)
output_image = BOX_ANNOTATOR.annotate(output_image, detections)
output_image = LABEL_ANNOTATOR.annotate(output_image, detections)
return output_image
def on_mode_dropdown_change(text):
return [
gr.Textbox(visible=text == OPEN_VOCABULARY_DETECTION),
gr.Textbox(visible=text == CAPTION_GROUNDING_MASKS),
]
def process(
mode_dropdown, image_input, text_input
) -> Tuple[Optional[Image.Image], Optional[str]]:
if not image_input:
return None, None
if mode_dropdown == OPEN_VOCABULARY_DETECTION:
if not text_input:
return None, None
_, result = run_florence_inference(
model=FLORENCE_MODEL,
processor=FLORENCE_PROCESSOR,
device=DEVICE,
image=image_input,
task=FLORENCE_OPEN_VOCABULARY_DETECTION_TASK,
text=text_input
)
detections = sv.Detections.from_lmm(
lmm=sv.LMM.FLORENCE_2,
result=result,
resolution_wh=image_input.size
)
detections = run_sam_inference(SAM_MODEL, image_input, detections)
return annotate_image(image_input, detections), None
if mode_dropdown == CAPTION_GROUNDING_MASKS:
_, result = run_florence_inference(
model=FLORENCE_MODEL,
processor=FLORENCE_PROCESSOR,
device=DEVICE,
image=image_input,
task=FLORENCE_DETAILED_CAPTION_TASK
)
caption = result[FLORENCE_DETAILED_CAPTION_TASK]
_, result = run_florence_inference(
model=FLORENCE_MODEL,
processor=FLORENCE_PROCESSOR,
device=DEVICE,
image=image_input,
task=FLORENCE_CAPTION_TO_PHRASE_GROUNDING_TASK,
text=caption
)
detections = sv.Detections.from_lmm(
lmm=sv.LMM.FLORENCE_2,
result=result,
resolution_wh=image_input.size
)
detections = run_sam_inference(SAM_MODEL, image_input, detections)
return annotate_image(image_input, detections), caption
with gr.Blocks() as demo:
gr.Markdown(MARKDOWN)
mode_dropdown_component = gr.Dropdown(
choices=INFERENCE_MODES,
value=INFERENCE_MODES[0],
label="Mode",
info="Select a mode to use.",
interactive=True
)
with gr.Row():
with gr.Column():
image_input_component = gr.Image(
type='pil', label='Upload image')
text_input_component = gr.Textbox(
label='Text prompt')
submit_button_component = gr.Button(value='Submit', variant='primary')
with gr.Column():
image_output_component = gr.Image(type='pil', label='Image output')
text_output_component = gr.Textbox(label='Caption output', visible=False)
with gr.Row():
gr.Examples(
fn=process,
examples=EXAMPLES,
inputs=[
mode_dropdown_component,
image_input_component,
text_input_component
],
outputs=[
image_output_component,
text_output_component
],
run_on_click=True
)
submit_button_component.click(
fn=process,
inputs=[
mode_dropdown_component,
image_input_component,
text_input_component
],
outputs=[
image_output_component,
text_output_component
]
)
mode_dropdown_component.change(
on_mode_dropdown_change,
inputs=[mode_dropdown_component],
outputs=[
text_input_component,
text_output_component
]
)
demo.launch(debug=False, show_error=True)