Spaces:
Running
on
Zero
Running
on
Zero
masking API
Browse files- README.md +2 -2
- app.py +36 -331
- utils/florence.py +2 -1
- utils/modes.py +0 -13
- utils/sam.py +4 -2
- utils/video.py +0 -26
- videos/clip-07-camera-1.mp4 +0 -3
- videos/clip-07-camera-2.mp4 +0 -3
- videos/clip-07-camera-3.mp4 +0 -3
README.md
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
---
|
2 |
-
title: Florence2 + SAM2
|
3 |
-
emoji:
|
4 |
colorFrom: purple
|
5 |
colorTo: green
|
6 |
sdk: gradio
|
|
|
1 |
---
|
2 |
+
title: Florence2 + SAM2 Masking
|
3 |
+
emoji: 😷
|
4 |
colorFrom: purple
|
5 |
colorTo: green
|
6 |
sdk: gradio
|
app.py
CHANGED
@@ -1,62 +1,14 @@
|
|
1 |
-
import
|
2 |
-
from typing import Tuple, Optional
|
3 |
|
4 |
-
import cv2
|
5 |
import gradio as gr
|
6 |
-
import numpy as np
|
7 |
import spaces
|
8 |
import supervision as sv
|
9 |
import torch
|
10 |
from PIL import Image
|
11 |
-
from tqdm import tqdm
|
12 |
-
from utils.video import generate_unique_name, create_directory, delete_directory
|
13 |
|
14 |
from utils.florence import load_florence_model, run_florence_inference, \
|
15 |
-
|
16 |
-
|
17 |
-
from utils.modes import IMAGE_INFERENCE_MODES, IMAGE_OPEN_VOCABULARY_DETECTION_MODE, \
|
18 |
-
IMAGE_CAPTION_GROUNDING_MASKS_MODE, VIDEO_INFERENCE_MODES
|
19 |
-
from utils.sam import load_sam_image_model, run_sam_inference, load_sam_video_model
|
20 |
-
|
21 |
-
MARKDOWN = """
|
22 |
-
# Florence2 + SAM2 🔥
|
23 |
-
|
24 |
-
<div>
|
25 |
-
<a href="https://github.com/facebookresearch/segment-anything-2">
|
26 |
-
<img src="https://badges.aleen42.com/src/github.svg" alt="GitHub" style="display:inline-block;">
|
27 |
-
</a>
|
28 |
-
<a href="https://colab.research.google.com/github/roboflow-ai/notebooks/blob/main/notebooks/how-to-segment-images-with-sam-2.ipynb">
|
29 |
-
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Colab" style="display:inline-block;">
|
30 |
-
</a>
|
31 |
-
<a href="https://blog.roboflow.com/what-is-segment-anything-2/">
|
32 |
-
<img src="https://raw.githubusercontent.com/roboflow-ai/notebooks/main/assets/badges/roboflow-blogpost.svg" alt="Roboflow" style="display:inline-block;">
|
33 |
-
</a>
|
34 |
-
<a href="https://www.youtube.com/watch?v=Dv003fTyO-Y">
|
35 |
-
<img src="https://badges.aleen42.com/src/youtube.svg" alt="YouTube" style="display:inline-block;">
|
36 |
-
</a>
|
37 |
-
</div>
|
38 |
-
|
39 |
-
This demo integrates Florence2 and SAM2 by creating a two-stage inference pipeline. In
|
40 |
-
the first stage, Florence2 performs tasks such as object detection, open-vocabulary
|
41 |
-
object detection, image captioning, or phrase grounding. In the second stage, SAM2
|
42 |
-
performs object segmentation on the image.
|
43 |
-
"""
|
44 |
-
|
45 |
-
IMAGE_PROCESSING_EXAMPLES = [
|
46 |
-
[IMAGE_OPEN_VOCABULARY_DETECTION_MODE, "https://media.roboflow.com/notebooks/examples/dog-2.jpeg", 'straw, white napkin, black napkin, hair'],
|
47 |
-
[IMAGE_OPEN_VOCABULARY_DETECTION_MODE, "https://media.roboflow.com/notebooks/examples/dog-3.jpeg", 'tail'],
|
48 |
-
[IMAGE_CAPTION_GROUNDING_MASKS_MODE, "https://media.roboflow.com/notebooks/examples/dog-2.jpeg", None],
|
49 |
-
[IMAGE_CAPTION_GROUNDING_MASKS_MODE, "https://media.roboflow.com/notebooks/examples/dog-3.jpeg", None],
|
50 |
-
]
|
51 |
-
VIDEO_PROCESSING_EXAMPLES = [
|
52 |
-
["videos/clip-07-camera-1.mp4", "player in white outfit, player in black outfit, ball, rim"],
|
53 |
-
["videos/clip-07-camera-2.mp4", "player in white outfit, player in black outfit, ball, rim"],
|
54 |
-
["videos/clip-07-camera-3.mp4", "player in white outfit, player in black outfit, ball, rim"]
|
55 |
-
]
|
56 |
-
|
57 |
-
VIDEO_SCALE_FACTOR = 0.5
|
58 |
-
VIDEO_TARGET_DIRECTORY = "tmp"
|
59 |
-
create_directory(directory_path=VIDEO_TARGET_DIRECTORY)
|
60 |
|
61 |
DEVICE = torch.device("cuda")
|
62 |
# DEVICE = torch.device("cpu")
|
@@ -69,119 +21,21 @@ if torch.cuda.get_device_properties(0).major >= 8:
|
|
69 |
|
70 |
FLORENCE_MODEL, FLORENCE_PROCESSOR = load_florence_model(device=DEVICE)
|
71 |
SAM_IMAGE_MODEL = load_sam_image_model(device=DEVICE)
|
72 |
-
SAM_VIDEO_MODEL = load_sam_video_model(device=DEVICE)
|
73 |
-
COLORS = ['#FF1493', '#00BFFF', '#FF6347', '#FFD700', '#32CD32', '#8A2BE2']
|
74 |
-
COLOR_PALETTE = sv.ColorPalette.from_hex(COLORS)
|
75 |
-
BOX_ANNOTATOR = sv.BoxAnnotator(color=COLOR_PALETTE, color_lookup=sv.ColorLookup.INDEX)
|
76 |
-
LABEL_ANNOTATOR = sv.LabelAnnotator(
|
77 |
-
color=COLOR_PALETTE,
|
78 |
-
color_lookup=sv.ColorLookup.INDEX,
|
79 |
-
text_position=sv.Position.CENTER_OF_MASS,
|
80 |
-
text_color=sv.Color.from_hex("#000000"),
|
81 |
-
border_radius=5
|
82 |
-
)
|
83 |
-
MASK_ANNOTATOR = sv.MaskAnnotator(
|
84 |
-
color=COLOR_PALETTE,
|
85 |
-
color_lookup=sv.ColorLookup.INDEX
|
86 |
-
)
|
87 |
-
|
88 |
-
|
89 |
-
def annotate_image(image, detections):
|
90 |
-
output_image = image.copy()
|
91 |
-
output_image = MASK_ANNOTATOR.annotate(output_image, detections)
|
92 |
-
output_image = BOX_ANNOTATOR.annotate(output_image, detections)
|
93 |
-
output_image = LABEL_ANNOTATOR.annotate(output_image, detections)
|
94 |
-
return output_image
|
95 |
-
|
96 |
-
|
97 |
-
def on_mode_dropdown_change(text):
|
98 |
-
return [
|
99 |
-
gr.Textbox(visible=text == IMAGE_OPEN_VOCABULARY_DETECTION_MODE),
|
100 |
-
gr.Textbox(visible=text == IMAGE_CAPTION_GROUNDING_MASKS_MODE),
|
101 |
-
]
|
102 |
|
103 |
|
104 |
@spaces.GPU
|
105 |
@torch.inference_mode()
|
106 |
@torch.autocast(device_type="cuda", dtype=torch.bfloat16)
|
107 |
def process_image(
|
108 |
-
|
109 |
-
) ->
|
110 |
if not image_input:
|
111 |
gr.Info("Please upload an image.")
|
112 |
-
return
|
113 |
-
|
114 |
-
if mode_dropdown == IMAGE_OPEN_VOCABULARY_DETECTION_MODE:
|
115 |
-
if not text_input:
|
116 |
-
gr.Info("Please enter a text prompt.")
|
117 |
-
return None, None
|
118 |
-
|
119 |
-
texts = [prompt.strip() for prompt in text_input.split(",")]
|
120 |
-
detections_list = []
|
121 |
-
for text in texts:
|
122 |
-
_, result = run_florence_inference(
|
123 |
-
model=FLORENCE_MODEL,
|
124 |
-
processor=FLORENCE_PROCESSOR,
|
125 |
-
device=DEVICE,
|
126 |
-
image=image_input,
|
127 |
-
task=FLORENCE_OPEN_VOCABULARY_DETECTION_TASK,
|
128 |
-
text=text
|
129 |
-
)
|
130 |
-
detections = sv.Detections.from_lmm(
|
131 |
-
lmm=sv.LMM.FLORENCE_2,
|
132 |
-
result=result,
|
133 |
-
resolution_wh=image_input.size
|
134 |
-
)
|
135 |
-
detections = run_sam_inference(SAM_IMAGE_MODEL, image_input, detections)
|
136 |
-
detections_list.append(detections)
|
137 |
-
|
138 |
-
detections = sv.Detections.merge(detections_list)
|
139 |
-
detections = run_sam_inference(SAM_IMAGE_MODEL, image_input, detections)
|
140 |
-
return annotate_image(image_input, detections), None
|
141 |
-
|
142 |
-
if mode_dropdown == IMAGE_CAPTION_GROUNDING_MASKS_MODE:
|
143 |
-
_, result = run_florence_inference(
|
144 |
-
model=FLORENCE_MODEL,
|
145 |
-
processor=FLORENCE_PROCESSOR,
|
146 |
-
device=DEVICE,
|
147 |
-
image=image_input,
|
148 |
-
task=FLORENCE_DETAILED_CAPTION_TASK
|
149 |
-
)
|
150 |
-
caption = result[FLORENCE_DETAILED_CAPTION_TASK]
|
151 |
-
_, result = run_florence_inference(
|
152 |
-
model=FLORENCE_MODEL,
|
153 |
-
processor=FLORENCE_PROCESSOR,
|
154 |
-
device=DEVICE,
|
155 |
-
image=image_input,
|
156 |
-
task=FLORENCE_CAPTION_TO_PHRASE_GROUNDING_TASK,
|
157 |
-
text=caption
|
158 |
-
)
|
159 |
-
detections = sv.Detections.from_lmm(
|
160 |
-
lmm=sv.LMM.FLORENCE_2,
|
161 |
-
result=result,
|
162 |
-
resolution_wh=image_input.size
|
163 |
-
)
|
164 |
-
detections = run_sam_inference(SAM_IMAGE_MODEL, image_input, detections)
|
165 |
-
return annotate_image(image_input, detections), caption
|
166 |
-
|
167 |
-
|
168 |
-
@spaces.GPU(duration=300)
|
169 |
-
@torch.inference_mode()
|
170 |
-
@torch.autocast(device_type="cuda", dtype=torch.bfloat16)
|
171 |
-
def process_video(
|
172 |
-
video_input, text_input, progress=gr.Progress(track_tqdm=True)
|
173 |
-
) -> Optional[str]:
|
174 |
-
if not video_input:
|
175 |
-
gr.Info("Please upload a video.")
|
176 |
-
return None
|
177 |
|
178 |
if not text_input:
|
179 |
gr.Info("Please enter a text prompt.")
|
180 |
-
return
|
181 |
-
|
182 |
-
frame_generator = sv.get_video_frames_generator(video_input)
|
183 |
-
frame = next(frame_generator)
|
184 |
-
frame = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
|
185 |
|
186 |
texts = [prompt.strip() for prompt in text_input.split(",")]
|
187 |
detections_list = []
|
@@ -190,208 +44,59 @@ def process_video(
|
|
190 |
model=FLORENCE_MODEL,
|
191 |
processor=FLORENCE_PROCESSOR,
|
192 |
device=DEVICE,
|
193 |
-
image=
|
194 |
task=FLORENCE_OPEN_VOCABULARY_DETECTION_TASK,
|
195 |
text=text
|
196 |
)
|
197 |
detections = sv.Detections.from_lmm(
|
198 |
lmm=sv.LMM.FLORENCE_2,
|
199 |
result=result,
|
200 |
-
resolution_wh=
|
201 |
)
|
202 |
-
detections = run_sam_inference(SAM_IMAGE_MODEL,
|
203 |
detections_list.append(detections)
|
204 |
|
205 |
detections = sv.Detections.merge(detections_list)
|
206 |
-
detections = run_sam_inference(SAM_IMAGE_MODEL,
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
"different text prompt."
|
213 |
-
)
|
214 |
-
return None
|
215 |
-
|
216 |
-
name = generate_unique_name()
|
217 |
-
frame_directory_path = os.path.join(VIDEO_TARGET_DIRECTORY, name)
|
218 |
-
frames_sink = sv.ImageSink(
|
219 |
-
target_dir_path=frame_directory_path,
|
220 |
-
image_name_pattern="{:05d}.jpeg"
|
221 |
-
)
|
222 |
-
|
223 |
-
video_info = sv.VideoInfo.from_video_path(video_input)
|
224 |
-
video_info.width = int(video_info.width * VIDEO_SCALE_FACTOR)
|
225 |
-
video_info.height = int(video_info.height * VIDEO_SCALE_FACTOR)
|
226 |
-
|
227 |
-
frames_generator = sv.get_video_frames_generator(video_input)
|
228 |
-
with frames_sink:
|
229 |
-
for frame in tqdm(
|
230 |
-
frames_generator,
|
231 |
-
total=video_info.total_frames,
|
232 |
-
desc="splitting video into frames"
|
233 |
-
):
|
234 |
-
frame = sv.scale_image(frame, VIDEO_SCALE_FACTOR)
|
235 |
-
frames_sink.save_image(frame)
|
236 |
-
|
237 |
-
inference_state = SAM_VIDEO_MODEL.init_state(
|
238 |
-
video_path=frame_directory_path,
|
239 |
-
device=DEVICE
|
240 |
-
)
|
241 |
-
|
242 |
-
for mask_index, mask in enumerate(detections.mask):
|
243 |
-
_, object_ids, mask_logits = SAM_VIDEO_MODEL.add_new_mask(
|
244 |
-
inference_state=inference_state,
|
245 |
-
frame_idx=0,
|
246 |
-
obj_id=mask_index,
|
247 |
-
mask=mask
|
248 |
-
)
|
249 |
-
|
250 |
-
video_path = os.path.join(VIDEO_TARGET_DIRECTORY, f"{name}.mp4")
|
251 |
-
frames_generator = sv.get_video_frames_generator(video_input)
|
252 |
-
masks_generator = SAM_VIDEO_MODEL.propagate_in_video(inference_state)
|
253 |
-
with sv.VideoSink(video_path, video_info=video_info) as sink:
|
254 |
-
for frame, (_, tracker_ids, mask_logits) in zip(frames_generator, masks_generator):
|
255 |
-
frame = sv.scale_image(frame, VIDEO_SCALE_FACTOR)
|
256 |
-
masks = (mask_logits > 0.0).cpu().numpy().astype(bool)
|
257 |
-
if len(masks.shape) == 4:
|
258 |
-
masks = np.squeeze(masks, axis=1)
|
259 |
-
|
260 |
-
detections = sv.Detections(
|
261 |
-
xyxy=sv.mask_to_xyxy(masks=masks),
|
262 |
-
mask=masks,
|
263 |
-
class_id=np.array(tracker_ids)
|
264 |
-
)
|
265 |
-
annotated_frame = frame.copy()
|
266 |
-
annotated_frame = MASK_ANNOTATOR.annotate(
|
267 |
-
scene=annotated_frame, detections=detections)
|
268 |
-
annotated_frame = BOX_ANNOTATOR.annotate(
|
269 |
-
scene=annotated_frame, detections=detections)
|
270 |
-
sink.write_frame(annotated_frame)
|
271 |
-
|
272 |
-
delete_directory(frame_directory_path)
|
273 |
-
return video_path
|
274 |
|
275 |
|
276 |
with gr.Blocks() as demo:
|
277 |
-
gr.
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
with gr.
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
image_processing_text_input_component = gr.Textbox(
|
291 |
-
label='Text prompt',
|
292 |
-
placeholder='Enter comma separated text prompts')
|
293 |
-
image_processing_submit_button_component = gr.Button(
|
294 |
-
value='Submit', variant='primary')
|
295 |
-
with gr.Column():
|
296 |
-
image_processing_image_output_component = gr.Image(
|
297 |
-
type='pil', label='Image output')
|
298 |
-
image_processing_text_output_component = gr.Textbox(
|
299 |
-
label='Caption output', visible=False)
|
300 |
-
|
301 |
-
with gr.Row():
|
302 |
-
gr.Examples(
|
303 |
-
fn=process_image,
|
304 |
-
examples=IMAGE_PROCESSING_EXAMPLES,
|
305 |
-
inputs=[
|
306 |
-
image_processing_mode_dropdown_component,
|
307 |
-
image_processing_image_input_component,
|
308 |
-
image_processing_text_input_component
|
309 |
-
],
|
310 |
-
outputs=[
|
311 |
-
image_processing_image_output_component,
|
312 |
-
image_processing_text_output_component
|
313 |
-
],
|
314 |
-
run_on_click=True
|
315 |
-
)
|
316 |
-
with gr.Tab("Video"):
|
317 |
-
video_processing_mode_dropdown_component = gr.Dropdown(
|
318 |
-
choices=VIDEO_INFERENCE_MODES,
|
319 |
-
value=VIDEO_INFERENCE_MODES[0],
|
320 |
-
label="Mode",
|
321 |
-
info="Select a mode to use.",
|
322 |
-
interactive=True
|
323 |
-
)
|
324 |
-
with gr.Row():
|
325 |
-
with gr.Column():
|
326 |
-
video_processing_video_input_component = gr.Video(
|
327 |
-
label='Upload video')
|
328 |
-
video_processing_text_input_component = gr.Textbox(
|
329 |
-
label='Text prompt',
|
330 |
-
placeholder='Enter comma separated text prompts')
|
331 |
-
video_processing_submit_button_component = gr.Button(
|
332 |
-
value='Submit', variant='primary')
|
333 |
-
with gr.Column():
|
334 |
-
video_processing_video_output_component = gr.Video(
|
335 |
-
label='Video output')
|
336 |
-
with gr.Row():
|
337 |
-
gr.Examples(
|
338 |
-
fn=process_video,
|
339 |
-
examples=VIDEO_PROCESSING_EXAMPLES,
|
340 |
-
inputs=[
|
341 |
-
video_processing_video_input_component,
|
342 |
-
video_processing_text_input_component
|
343 |
-
],
|
344 |
-
outputs=video_processing_video_output_component,
|
345 |
-
run_on_click=True
|
346 |
-
)
|
347 |
-
|
348 |
-
image_processing_submit_button_component.click(
|
349 |
fn=process_image,
|
350 |
inputs=[
|
351 |
-
|
352 |
-
|
353 |
-
image_processing_text_input_component
|
354 |
],
|
355 |
outputs=[
|
356 |
-
|
357 |
-
image_processing_text_output_component
|
358 |
]
|
359 |
)
|
360 |
-
|
361 |
fn=process_image,
|
362 |
inputs=[
|
363 |
-
|
364 |
-
|
365 |
-
image_processing_text_input_component
|
366 |
],
|
367 |
outputs=[
|
368 |
-
|
369 |
-
image_processing_text_output_component
|
370 |
]
|
371 |
)
|
372 |
-
image_processing_mode_dropdown_component.change(
|
373 |
-
on_mode_dropdown_change,
|
374 |
-
inputs=[image_processing_mode_dropdown_component],
|
375 |
-
outputs=[
|
376 |
-
image_processing_text_input_component,
|
377 |
-
image_processing_text_output_component
|
378 |
-
]
|
379 |
-
)
|
380 |
-
video_processing_submit_button_component.click(
|
381 |
-
fn=process_video,
|
382 |
-
inputs=[
|
383 |
-
video_processing_video_input_component,
|
384 |
-
video_processing_text_input_component
|
385 |
-
],
|
386 |
-
outputs=video_processing_video_output_component
|
387 |
-
)
|
388 |
-
video_processing_text_input_component.submit(
|
389 |
-
fn=process_video,
|
390 |
-
inputs=[
|
391 |
-
video_processing_video_input_component,
|
392 |
-
video_processing_text_input_component
|
393 |
-
],
|
394 |
-
outputs=video_processing_video_output_component
|
395 |
-
)
|
396 |
|
397 |
demo.launch(debug=False, show_error=True)
|
|
|
1 |
+
from typing import List
|
|
|
2 |
|
|
|
3 |
import gradio as gr
|
|
|
4 |
import spaces
|
5 |
import supervision as sv
|
6 |
import torch
|
7 |
from PIL import Image
|
|
|
|
|
8 |
|
9 |
from utils.florence import load_florence_model, run_florence_inference, \
|
10 |
+
FLORENCE_OPEN_VOCABULARY_DETECTION_TASK
|
11 |
+
from utils.sam import load_sam_image_model, run_sam_inference
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
DEVICE = torch.device("cuda")
|
14 |
# DEVICE = torch.device("cpu")
|
|
|
21 |
|
22 |
FLORENCE_MODEL, FLORENCE_PROCESSOR = load_florence_model(device=DEVICE)
|
23 |
SAM_IMAGE_MODEL = load_sam_image_model(device=DEVICE)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
|
26 |
@spaces.GPU
|
27 |
@torch.inference_mode()
|
28 |
@torch.autocast(device_type="cuda", dtype=torch.bfloat16)
|
29 |
def process_image(
|
30 |
+
image_input, text_input
|
31 |
+
) -> List[Image]:
|
32 |
if not image_input:
|
33 |
gr.Info("Please upload an image.")
|
34 |
+
return []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
if not text_input:
|
37 |
gr.Info("Please enter a text prompt.")
|
38 |
+
return []
|
|
|
|
|
|
|
|
|
39 |
|
40 |
texts = [prompt.strip() for prompt in text_input.split(",")]
|
41 |
detections_list = []
|
|
|
44 |
model=FLORENCE_MODEL,
|
45 |
processor=FLORENCE_PROCESSOR,
|
46 |
device=DEVICE,
|
47 |
+
image=image_input,
|
48 |
task=FLORENCE_OPEN_VOCABULARY_DETECTION_TASK,
|
49 |
text=text
|
50 |
)
|
51 |
detections = sv.Detections.from_lmm(
|
52 |
lmm=sv.LMM.FLORENCE_2,
|
53 |
result=result,
|
54 |
+
resolution_wh=image_input.size
|
55 |
)
|
56 |
+
detections = run_sam_inference(SAM_IMAGE_MODEL, image_input, detections)
|
57 |
detections_list.append(detections)
|
58 |
|
59 |
detections = sv.Detections.merge(detections_list)
|
60 |
+
detections = run_sam_inference(SAM_IMAGE_MODEL, image_input, detections)
|
61 |
+
return [
|
62 |
+
Image.fromarray(mask.astype("uint8") * 255)
|
63 |
+
for mask
|
64 |
+
in detections.mask
|
65 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
|
68 |
with gr.Blocks() as demo:
|
69 |
+
with gr.Row():
|
70 |
+
with gr.Column():
|
71 |
+
image_input_component = gr.Image(
|
72 |
+
type='pil', label='Upload image')
|
73 |
+
text_input_component = gr.Textbox(
|
74 |
+
label='Text prompt',
|
75 |
+
placeholder='Enter comma separated text prompts')
|
76 |
+
submit_button_component = gr.Button(
|
77 |
+
value='Submit', variant='primary')
|
78 |
+
with gr.Column():
|
79 |
+
gallery_output_component = gr.Gallery(label='Output masks')
|
80 |
+
|
81 |
+
submit_button_component.click(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
fn=process_image,
|
83 |
inputs=[
|
84 |
+
image_input_component,
|
85 |
+
text_input_component
|
|
|
86 |
],
|
87 |
outputs=[
|
88 |
+
gallery_output_component,
|
|
|
89 |
]
|
90 |
)
|
91 |
+
text_input_component.submit(
|
92 |
fn=process_image,
|
93 |
inputs=[
|
94 |
+
image_input_component,
|
95 |
+
text_input_component
|
|
|
96 |
],
|
97 |
outputs=[
|
98 |
+
gallery_output_component,
|
|
|
99 |
]
|
100 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
demo.launch(debug=False, show_error=True)
|
utils/florence.py
CHANGED
@@ -7,7 +7,8 @@ from PIL import Image
|
|
7 |
from transformers import AutoModelForCausalLM, AutoProcessor
|
8 |
from transformers.dynamic_module_utils import get_imports
|
9 |
|
10 |
-
FLORENCE_CHECKPOINT = "microsoft/Florence-2-base"
|
|
|
11 |
FLORENCE_OBJECT_DETECTION_TASK = '<OD>'
|
12 |
FLORENCE_DETAILED_CAPTION_TASK = '<MORE_DETAILED_CAPTION>'
|
13 |
FLORENCE_CAPTION_TO_PHRASE_GROUNDING_TASK = '<CAPTION_TO_PHRASE_GROUNDING>'
|
|
|
7 |
from transformers import AutoModelForCausalLM, AutoProcessor
|
8 |
from transformers.dynamic_module_utils import get_imports
|
9 |
|
10 |
+
# FLORENCE_CHECKPOINT = "microsoft/Florence-2-base"
|
11 |
+
FLORENCE_CHECKPOINT = "microsoft/Florence-2-large"
|
12 |
FLORENCE_OBJECT_DETECTION_TASK = '<OD>'
|
13 |
FLORENCE_DETAILED_CAPTION_TASK = '<MORE_DETAILED_CAPTION>'
|
14 |
FLORENCE_CAPTION_TO_PHRASE_GROUNDING_TASK = '<CAPTION_TO_PHRASE_GROUNDING>'
|
utils/modes.py
DELETED
@@ -1,13 +0,0 @@
|
|
1 |
-
IMAGE_OPEN_VOCABULARY_DETECTION_MODE = "open vocabulary detection + image masks"
|
2 |
-
IMAGE_CAPTION_GROUNDING_MASKS_MODE = "caption + grounding + image masks"
|
3 |
-
|
4 |
-
IMAGE_INFERENCE_MODES = [
|
5 |
-
IMAGE_OPEN_VOCABULARY_DETECTION_MODE,
|
6 |
-
IMAGE_CAPTION_GROUNDING_MASKS_MODE
|
7 |
-
]
|
8 |
-
|
9 |
-
VIDEO_OPEN_VOCABULARY_DETECTION_MODE = "open vocabulary detection + video masks"
|
10 |
-
|
11 |
-
VIDEO_INFERENCE_MODES = [
|
12 |
-
VIDEO_OPEN_VOCABULARY_DETECTION_MODE
|
13 |
-
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
utils/sam.py
CHANGED
@@ -7,8 +7,10 @@ from PIL import Image
|
|
7 |
from sam2.build_sam import build_sam2, build_sam2_video_predictor
|
8 |
from sam2.sam2_image_predictor import SAM2ImagePredictor
|
9 |
|
10 |
-
SAM_CHECKPOINT = "checkpoints/sam2_hiera_small.pt"
|
11 |
-
SAM_CONFIG = "sam2_hiera_s.yaml"
|
|
|
|
|
12 |
|
13 |
|
14 |
def load_sam_image_model(
|
|
|
7 |
from sam2.build_sam import build_sam2, build_sam2_video_predictor
|
8 |
from sam2.sam2_image_predictor import SAM2ImagePredictor
|
9 |
|
10 |
+
# SAM_CHECKPOINT = "checkpoints/sam2_hiera_small.pt"
|
11 |
+
# SAM_CONFIG = "sam2_hiera_s.yaml"
|
12 |
+
SAM_CHECKPOINT = "checkpoints/sam2_hiera_large.pt"
|
13 |
+
SAM_CONFIG = "sam2_hiera_l.yaml"
|
14 |
|
15 |
|
16 |
def load_sam_image_model(
|
utils/video.py
DELETED
@@ -1,26 +0,0 @@
|
|
1 |
-
import datetime
|
2 |
-
import os
|
3 |
-
import shutil
|
4 |
-
import uuid
|
5 |
-
|
6 |
-
|
7 |
-
def create_directory(directory_path: str) -> None:
|
8 |
-
if not os.path.exists(directory_path):
|
9 |
-
os.makedirs(directory_path)
|
10 |
-
|
11 |
-
|
12 |
-
def delete_directory(directory_path: str) -> None:
|
13 |
-
if not os.path.exists(directory_path):
|
14 |
-
raise FileNotFoundError(f"Directory '{directory_path}' does not exist.")
|
15 |
-
|
16 |
-
try:
|
17 |
-
shutil.rmtree(directory_path)
|
18 |
-
except PermissionError:
|
19 |
-
raise PermissionError(
|
20 |
-
f"Permission denied: Unable to delete '{directory_path}'.")
|
21 |
-
|
22 |
-
|
23 |
-
def generate_unique_name():
|
24 |
-
current_datetime = datetime.datetime.now().strftime("%Y%m%d%H%M%S")
|
25 |
-
unique_id = uuid.uuid4()
|
26 |
-
return f"{current_datetime}_{unique_id}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
videos/clip-07-camera-1.mp4
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:7944c1a5e9be241ebf11eb39f6302c3ce9d8482ca9f12e4268b252aeda6baee9
|
3 |
-
size 5500081
|
|
|
|
|
|
|
|
videos/clip-07-camera-2.mp4
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:abbfef6d422c9aa3968d14de6b78aecaf544c85423d401387e3d5e75ffee3497
|
3 |
-
size 5467189
|
|
|
|
|
|
|
|
videos/clip-07-camera-3.mp4
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:e518f2ee6761d559bc864be2fec70ddc41244fbf3fea404c3158129a434ce879
|
3 |
-
size 5397505
|
|
|
|
|
|
|
|