jiuface commited on
Commit
7b934fb
1 Parent(s): efc40ec

init commit

Browse files
Files changed (1) hide show
  1. app.py +85 -45
app.py CHANGED
@@ -22,6 +22,7 @@ import json
22
  from utils.florence import load_florence_model, run_florence_inference, \
23
  FLORENCE_OPEN_VOCABULARY_DETECTION_TASK
24
  from utils.sam import load_sam_image_model, run_sam_inference
 
25
 
26
 
27
 
@@ -41,6 +42,10 @@ taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).
41
  good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype).to(device)
42
  pipe = FluxInpaintPipeline.from_pretrained(base_model, torch_dtype=dtype, vae=taef1).to(device)
43
 
 
 
 
 
44
  class calculateDuration:
45
  def __init__(self, activity_name=""):
46
  self.activity_name = activity_name
@@ -129,7 +134,6 @@ def upload_image_to_r2(image, account_id, access_key, secret_key, bucket_name):
129
  return image_file
130
 
131
 
132
- @spaces.GPU(duration=50)
133
  def run_flux(
134
  image: Image.Image,
135
  mask: Image.Image,
@@ -154,28 +158,74 @@ def run_flux(
154
  seed_slicer = random.randint(0, MAX_SEED)
155
  generator = torch.Generator().manual_seed(seed_slicer)
156
 
157
- return PIPE(
158
- prompt=prompt,
159
- image=image,
160
- mask_image=mask,
161
- width=width,
162
- height=height,
163
- strength=strength_slider,
164
- generator=generator,
165
- num_inference_steps=num_inference_steps_slider,
166
- max_sequence_length=256,
167
- joint_attention_kwargs={"scale": lora_scale},
168
- ).images[0]
169
-
170
-
171
- @spaces.GPU(duration=50)
 
 
172
  def genearte_mask(image: Image.Image, masking_prompt_text: str) -> Image.Image:
173
  # generate mask by florence & sam
174
  print("Generating mask...")
175
-
176
- return
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
177
 
178
 
 
179
  def process(
180
  image_url: str,
181
  inpainting_prompt_text: str,
@@ -199,31 +249,32 @@ def process(
199
  if not image_url:
200
  gr.Info("please enter image url for inpaiting")
201
  result["message"] = "invalid image url"
202
- return None, None, json.dumps(result)
203
 
204
  if not inpainting_prompt_text:
205
  gr.Info("Please enter inpainting text prompt.")
206
  result["message"] = "invalid inpainting prompt"
207
- return None, None, json.dumps(result)
208
 
209
  if not masking_prompt_text:
210
  gr.Info("Please enter masking_prompt_text.")
211
  result["message"] = "invalid masking prompt"
212
- return None, None, json.dumps(result)
213
-
214
 
215
- image = load_image(image_url)
 
 
216
  mask = genearte_mask(image, masking_prompt_text)
217
 
218
  if not image:
219
  gr.Info("Please upload an image.")
220
  result["message"] = "can not load image"
221
- return None, None, json.dumps(result)
222
 
223
  if is_mask_empty(mask):
224
  gr.Info("Please draw a mask or enter a masking prompt.")
225
  result["message"] = "can not generate mask"
226
- return None, None, json.dumps(result)
227
 
228
  # generate
229
  width, height = calculate_image_dimensions_for_flux(original_resolution_wh=image.size)
@@ -243,14 +294,14 @@ def process(
243
  num_inference_steps_slider=num_inference_steps_slider,
244
  resolution_wh=(width, height)
245
  )
 
246
  if upload_to_r2:
247
  url = upload_image_to_r2(image, account_id, access_key, secret_key, bucket)
248
  result = {"status": "success", "url": url}
249
  else:
250
  result = {"status": "success", "message": "Image generated but not uploaded"}
251
 
252
- return image, mask, json.dumps(result)
253
-
254
 
255
 
256
  with gr.Blocks() as demo:
@@ -309,11 +360,8 @@ with gr.Blocks() as demo:
309
  value=0.9,
310
  )
311
 
312
-
313
-
314
  with gr.Accordion("Advanced Settings", open=False):
315
 
316
-
317
  with gr.Row():
318
  mask_inflation_slider_component = gr.Slider(
319
  label="Mask inflation",
@@ -370,23 +418,17 @@ with gr.Blocks() as demo:
370
  )
371
 
372
  upload_to_r2 = gr.Checkbox(label="Upload to R2", value=False)
373
- account_id = gr.Textbox(label="Account Id", placeholder="Enter R2 account id")
374
- access_key = gr.Textbox(label="Access Key", placeholder="Enter R2 access key here")
375
- secret_key = gr.Textbox(label="Secret Key", placeholder="Enter R2 secret key here")
376
- bucket = gr.Textbox(label="Bucket Name", placeholder="Enter R2 bucket name here")
 
 
 
377
 
378
 
379
  with gr.Column():
380
 
381
- output_image_component = gr.Image(
382
- type='pil', image_mode='RGB', label='Generated image', format="png")
383
-
384
-
385
-
386
- with gr.Accordion("Debug", open=False):
387
- output_mask_component = gr.Image(
388
- type='pil', image_mode='RGB', label='Input mask', format="png")
389
-
390
  output_json_component = gr.Textbox()
391
 
392
  submit_button_component.click(
@@ -411,8 +453,6 @@ with gr.Blocks() as demo:
411
  bucket
412
  ],
413
  outputs=[
414
- output_image_component,
415
- output_mask_component,
416
  output_json_component
417
  ]
418
  )
 
22
  from utils.florence import load_florence_model, run_florence_inference, \
23
  FLORENCE_OPEN_VOCABULARY_DETECTION_TASK
24
  from utils.sam import load_sam_image_model, run_sam_inference
25
+ import supervision as sv
26
 
27
 
28
 
 
42
  good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype).to(device)
43
  pipe = FluxInpaintPipeline.from_pretrained(base_model, torch_dtype=dtype, vae=taef1).to(device)
44
 
45
+ FLORENCE_MODEL, FLORENCE_PROCESSOR = load_florence_model(device=device)
46
+ SAM_IMAGE_MODEL = load_sam_image_model(device=device)
47
+
48
+
49
  class calculateDuration:
50
  def __init__(self, activity_name=""):
51
  self.activity_name = activity_name
 
134
  return image_file
135
 
136
 
 
137
  def run_flux(
138
  image: Image.Image,
139
  mask: Image.Image,
 
158
  seed_slicer = random.randint(0, MAX_SEED)
159
  generator = torch.Generator().manual_seed(seed_slicer)
160
 
161
+ with calculateDuration("run pipe"):
162
+ genearte_image = PIPE(
163
+ prompt=prompt,
164
+ image=image,
165
+ mask_image=mask,
166
+ width=width,
167
+ height=height,
168
+ strength=strength_slider,
169
+ generator=generator,
170
+ num_inference_steps=num_inference_steps_slider,
171
+ max_sequence_length=256,
172
+ joint_attention_kwargs={"scale": lora_scale},
173
+ ).images[0]
174
+
175
+ return genearte_image
176
+
177
+
178
  def genearte_mask(image: Image.Image, masking_prompt_text: str) -> Image.Image:
179
  # generate mask by florence & sam
180
  print("Generating mask...")
181
+ task_prompt = "<CAPTION_TO_PHRASE_GROUNDING>"
182
+
183
+ with calculateDuration("FLORENCE"):
184
+ print(task_prompt, masking_prompt_text)
185
+ _, result = run_florence_inference(
186
+ model=FLORENCE_MODEL,
187
+ processor=FLORENCE_PROCESSOR,
188
+ device=device,
189
+ image=image,
190
+ task=task_prompt,
191
+ text=masking_prompt_text
192
+ )
193
+
194
+ with calculateDuration("sv.Detections"):
195
+ # start to dectect
196
+ detections = sv.Detections.from_lmm(
197
+ lmm=sv.LMM.FLORENCE_2,
198
+ result=result,
199
+ resolution_wh=image_input.size
200
+ )
201
+
202
+ images = []
203
+
204
+ with calculateDuration("generate segmenet mask"):
205
+ # using sam generate segments images
206
+ detections = run_sam_inference(SAM_IMAGE_MODEL, image, detections)
207
+ if len(detections) == 0:
208
+ gr.Info("No objects detected.")
209
+ return None
210
+ print("mask generated:", len(detections.mask))
211
+ kernel_size = dilate
212
+ kernel = np.ones((kernel_size, kernel_size), np.uint8)
213
+
214
+ for i in range(len(detections.mask)):
215
+ mask = detections.mask[i].astype(np.uint8) * 255
216
+ images.append(mask)
217
+
218
+ # merge mark into on image
219
+ merged_mask = np.zeros_like(images[0], dtype=np.uint8)
220
+ for mask in images:
221
+ merged_mask = cv2.bitwise_or(merged_mask, mask)
222
+
223
+ images = [merged_mask]
224
+
225
+ return images[0]
226
 
227
 
228
+ @spaces.GPU(duration=120)
229
  def process(
230
  image_url: str,
231
  inpainting_prompt_text: str,
 
249
  if not image_url:
250
  gr.Info("please enter image url for inpaiting")
251
  result["message"] = "invalid image url"
252
+ return json.dumps(result)
253
 
254
  if not inpainting_prompt_text:
255
  gr.Info("Please enter inpainting text prompt.")
256
  result["message"] = "invalid inpainting prompt"
257
+ return json.dumps(result)
258
 
259
  if not masking_prompt_text:
260
  gr.Info("Please enter masking_prompt_text.")
261
  result["message"] = "invalid masking prompt"
262
+ return json.dumps(result)
 
263
 
264
+ with calculateDuration("load image"):
265
+ image = load_image(image_url)
266
+
267
  mask = genearte_mask(image, masking_prompt_text)
268
 
269
  if not image:
270
  gr.Info("Please upload an image.")
271
  result["message"] = "can not load image"
272
+ return json.dumps(result)
273
 
274
  if is_mask_empty(mask):
275
  gr.Info("Please draw a mask or enter a masking prompt.")
276
  result["message"] = "can not generate mask"
277
+ return json.dumps(result)
278
 
279
  # generate
280
  width, height = calculate_image_dimensions_for_flux(original_resolution_wh=image.size)
 
294
  num_inference_steps_slider=num_inference_steps_slider,
295
  resolution_wh=(width, height)
296
  )
297
+
298
  if upload_to_r2:
299
  url = upload_image_to_r2(image, account_id, access_key, secret_key, bucket)
300
  result = {"status": "success", "url": url}
301
  else:
302
  result = {"status": "success", "message": "Image generated but not uploaded"}
303
 
304
+ return json.dumps(result)
 
305
 
306
 
307
  with gr.Blocks() as demo:
 
360
  value=0.9,
361
  )
362
 
 
 
363
  with gr.Accordion("Advanced Settings", open=False):
364
 
 
365
  with gr.Row():
366
  mask_inflation_slider_component = gr.Slider(
367
  label="Mask inflation",
 
418
  )
419
 
420
  upload_to_r2 = gr.Checkbox(label="Upload to R2", value=False)
421
+ with gr.Row():
422
+ account_id = gr.Textbox(label="Account Id", placeholder="Enter R2 account id")
423
+ bucket = gr.Textbox(label="Bucket Name", placeholder="Enter R2 bucket name here")
424
+
425
+ with gr.Row():
426
+ access_key = gr.Textbox(label="Access Key", placeholder="Enter R2 access key here")
427
+ secret_key = gr.Textbox(label="Secret Key", placeholder="Enter R2 secret key here")
428
 
429
 
430
  with gr.Column():
431
 
 
 
 
 
 
 
 
 
 
432
  output_json_component = gr.Textbox()
433
 
434
  submit_button_component.click(
 
453
  bucket
454
  ],
455
  outputs=[
 
 
456
  output_json_component
457
  ]
458
  )