Spaces:
Running
on
Zero
Running
on
Zero
init commit
Browse files
app.py
CHANGED
@@ -22,6 +22,7 @@ import json
|
|
22 |
from utils.florence import load_florence_model, run_florence_inference, \
|
23 |
FLORENCE_OPEN_VOCABULARY_DETECTION_TASK
|
24 |
from utils.sam import load_sam_image_model, run_sam_inference
|
|
|
25 |
|
26 |
|
27 |
|
@@ -41,6 +42,10 @@ taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).
|
|
41 |
good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype).to(device)
|
42 |
pipe = FluxInpaintPipeline.from_pretrained(base_model, torch_dtype=dtype, vae=taef1).to(device)
|
43 |
|
|
|
|
|
|
|
|
|
44 |
class calculateDuration:
|
45 |
def __init__(self, activity_name=""):
|
46 |
self.activity_name = activity_name
|
@@ -129,7 +134,6 @@ def upload_image_to_r2(image, account_id, access_key, secret_key, bucket_name):
|
|
129 |
return image_file
|
130 |
|
131 |
|
132 |
-
@spaces.GPU(duration=50)
|
133 |
def run_flux(
|
134 |
image: Image.Image,
|
135 |
mask: Image.Image,
|
@@ -154,28 +158,74 @@ def run_flux(
|
|
154 |
seed_slicer = random.randint(0, MAX_SEED)
|
155 |
generator = torch.Generator().manual_seed(seed_slicer)
|
156 |
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
|
|
|
|
172 |
def genearte_mask(image: Image.Image, masking_prompt_text: str) -> Image.Image:
|
173 |
# generate mask by florence & sam
|
174 |
print("Generating mask...")
|
175 |
-
|
176 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
177 |
|
178 |
|
|
|
179 |
def process(
|
180 |
image_url: str,
|
181 |
inpainting_prompt_text: str,
|
@@ -199,31 +249,32 @@ def process(
|
|
199 |
if not image_url:
|
200 |
gr.Info("please enter image url for inpaiting")
|
201 |
result["message"] = "invalid image url"
|
202 |
-
return
|
203 |
|
204 |
if not inpainting_prompt_text:
|
205 |
gr.Info("Please enter inpainting text prompt.")
|
206 |
result["message"] = "invalid inpainting prompt"
|
207 |
-
return
|
208 |
|
209 |
if not masking_prompt_text:
|
210 |
gr.Info("Please enter masking_prompt_text.")
|
211 |
result["message"] = "invalid masking prompt"
|
212 |
-
return
|
213 |
-
|
214 |
|
215 |
-
|
|
|
|
|
216 |
mask = genearte_mask(image, masking_prompt_text)
|
217 |
|
218 |
if not image:
|
219 |
gr.Info("Please upload an image.")
|
220 |
result["message"] = "can not load image"
|
221 |
-
return
|
222 |
|
223 |
if is_mask_empty(mask):
|
224 |
gr.Info("Please draw a mask or enter a masking prompt.")
|
225 |
result["message"] = "can not generate mask"
|
226 |
-
return
|
227 |
|
228 |
# generate
|
229 |
width, height = calculate_image_dimensions_for_flux(original_resolution_wh=image.size)
|
@@ -243,14 +294,14 @@ def process(
|
|
243 |
num_inference_steps_slider=num_inference_steps_slider,
|
244 |
resolution_wh=(width, height)
|
245 |
)
|
|
|
246 |
if upload_to_r2:
|
247 |
url = upload_image_to_r2(image, account_id, access_key, secret_key, bucket)
|
248 |
result = {"status": "success", "url": url}
|
249 |
else:
|
250 |
result = {"status": "success", "message": "Image generated but not uploaded"}
|
251 |
|
252 |
-
return
|
253 |
-
|
254 |
|
255 |
|
256 |
with gr.Blocks() as demo:
|
@@ -309,11 +360,8 @@ with gr.Blocks() as demo:
|
|
309 |
value=0.9,
|
310 |
)
|
311 |
|
312 |
-
|
313 |
-
|
314 |
with gr.Accordion("Advanced Settings", open=False):
|
315 |
|
316 |
-
|
317 |
with gr.Row():
|
318 |
mask_inflation_slider_component = gr.Slider(
|
319 |
label="Mask inflation",
|
@@ -370,23 +418,17 @@ with gr.Blocks() as demo:
|
|
370 |
)
|
371 |
|
372 |
upload_to_r2 = gr.Checkbox(label="Upload to R2", value=False)
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
|
|
|
|
|
|
377 |
|
378 |
|
379 |
with gr.Column():
|
380 |
|
381 |
-
output_image_component = gr.Image(
|
382 |
-
type='pil', image_mode='RGB', label='Generated image', format="png")
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
with gr.Accordion("Debug", open=False):
|
387 |
-
output_mask_component = gr.Image(
|
388 |
-
type='pil', image_mode='RGB', label='Input mask', format="png")
|
389 |
-
|
390 |
output_json_component = gr.Textbox()
|
391 |
|
392 |
submit_button_component.click(
|
@@ -411,8 +453,6 @@ with gr.Blocks() as demo:
|
|
411 |
bucket
|
412 |
],
|
413 |
outputs=[
|
414 |
-
output_image_component,
|
415 |
-
output_mask_component,
|
416 |
output_json_component
|
417 |
]
|
418 |
)
|
|
|
22 |
from utils.florence import load_florence_model, run_florence_inference, \
|
23 |
FLORENCE_OPEN_VOCABULARY_DETECTION_TASK
|
24 |
from utils.sam import load_sam_image_model, run_sam_inference
|
25 |
+
import supervision as sv
|
26 |
|
27 |
|
28 |
|
|
|
42 |
good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype).to(device)
|
43 |
pipe = FluxInpaintPipeline.from_pretrained(base_model, torch_dtype=dtype, vae=taef1).to(device)
|
44 |
|
45 |
+
FLORENCE_MODEL, FLORENCE_PROCESSOR = load_florence_model(device=device)
|
46 |
+
SAM_IMAGE_MODEL = load_sam_image_model(device=device)
|
47 |
+
|
48 |
+
|
49 |
class calculateDuration:
|
50 |
def __init__(self, activity_name=""):
|
51 |
self.activity_name = activity_name
|
|
|
134 |
return image_file
|
135 |
|
136 |
|
|
|
137 |
def run_flux(
|
138 |
image: Image.Image,
|
139 |
mask: Image.Image,
|
|
|
158 |
seed_slicer = random.randint(0, MAX_SEED)
|
159 |
generator = torch.Generator().manual_seed(seed_slicer)
|
160 |
|
161 |
+
with calculateDuration("run pipe"):
|
162 |
+
genearte_image = PIPE(
|
163 |
+
prompt=prompt,
|
164 |
+
image=image,
|
165 |
+
mask_image=mask,
|
166 |
+
width=width,
|
167 |
+
height=height,
|
168 |
+
strength=strength_slider,
|
169 |
+
generator=generator,
|
170 |
+
num_inference_steps=num_inference_steps_slider,
|
171 |
+
max_sequence_length=256,
|
172 |
+
joint_attention_kwargs={"scale": lora_scale},
|
173 |
+
).images[0]
|
174 |
+
|
175 |
+
return genearte_image
|
176 |
+
|
177 |
+
|
178 |
def genearte_mask(image: Image.Image, masking_prompt_text: str) -> Image.Image:
|
179 |
# generate mask by florence & sam
|
180 |
print("Generating mask...")
|
181 |
+
task_prompt = "<CAPTION_TO_PHRASE_GROUNDING>"
|
182 |
+
|
183 |
+
with calculateDuration("FLORENCE"):
|
184 |
+
print(task_prompt, masking_prompt_text)
|
185 |
+
_, result = run_florence_inference(
|
186 |
+
model=FLORENCE_MODEL,
|
187 |
+
processor=FLORENCE_PROCESSOR,
|
188 |
+
device=device,
|
189 |
+
image=image,
|
190 |
+
task=task_prompt,
|
191 |
+
text=masking_prompt_text
|
192 |
+
)
|
193 |
+
|
194 |
+
with calculateDuration("sv.Detections"):
|
195 |
+
# start to dectect
|
196 |
+
detections = sv.Detections.from_lmm(
|
197 |
+
lmm=sv.LMM.FLORENCE_2,
|
198 |
+
result=result,
|
199 |
+
resolution_wh=image_input.size
|
200 |
+
)
|
201 |
+
|
202 |
+
images = []
|
203 |
+
|
204 |
+
with calculateDuration("generate segmenet mask"):
|
205 |
+
# using sam generate segments images
|
206 |
+
detections = run_sam_inference(SAM_IMAGE_MODEL, image, detections)
|
207 |
+
if len(detections) == 0:
|
208 |
+
gr.Info("No objects detected.")
|
209 |
+
return None
|
210 |
+
print("mask generated:", len(detections.mask))
|
211 |
+
kernel_size = dilate
|
212 |
+
kernel = np.ones((kernel_size, kernel_size), np.uint8)
|
213 |
+
|
214 |
+
for i in range(len(detections.mask)):
|
215 |
+
mask = detections.mask[i].astype(np.uint8) * 255
|
216 |
+
images.append(mask)
|
217 |
+
|
218 |
+
# merge mark into on image
|
219 |
+
merged_mask = np.zeros_like(images[0], dtype=np.uint8)
|
220 |
+
for mask in images:
|
221 |
+
merged_mask = cv2.bitwise_or(merged_mask, mask)
|
222 |
+
|
223 |
+
images = [merged_mask]
|
224 |
+
|
225 |
+
return images[0]
|
226 |
|
227 |
|
228 |
+
@spaces.GPU(duration=120)
|
229 |
def process(
|
230 |
image_url: str,
|
231 |
inpainting_prompt_text: str,
|
|
|
249 |
if not image_url:
|
250 |
gr.Info("please enter image url for inpaiting")
|
251 |
result["message"] = "invalid image url"
|
252 |
+
return json.dumps(result)
|
253 |
|
254 |
if not inpainting_prompt_text:
|
255 |
gr.Info("Please enter inpainting text prompt.")
|
256 |
result["message"] = "invalid inpainting prompt"
|
257 |
+
return json.dumps(result)
|
258 |
|
259 |
if not masking_prompt_text:
|
260 |
gr.Info("Please enter masking_prompt_text.")
|
261 |
result["message"] = "invalid masking prompt"
|
262 |
+
return json.dumps(result)
|
|
|
263 |
|
264 |
+
with calculateDuration("load image"):
|
265 |
+
image = load_image(image_url)
|
266 |
+
|
267 |
mask = genearte_mask(image, masking_prompt_text)
|
268 |
|
269 |
if not image:
|
270 |
gr.Info("Please upload an image.")
|
271 |
result["message"] = "can not load image"
|
272 |
+
return json.dumps(result)
|
273 |
|
274 |
if is_mask_empty(mask):
|
275 |
gr.Info("Please draw a mask or enter a masking prompt.")
|
276 |
result["message"] = "can not generate mask"
|
277 |
+
return json.dumps(result)
|
278 |
|
279 |
# generate
|
280 |
width, height = calculate_image_dimensions_for_flux(original_resolution_wh=image.size)
|
|
|
294 |
num_inference_steps_slider=num_inference_steps_slider,
|
295 |
resolution_wh=(width, height)
|
296 |
)
|
297 |
+
|
298 |
if upload_to_r2:
|
299 |
url = upload_image_to_r2(image, account_id, access_key, secret_key, bucket)
|
300 |
result = {"status": "success", "url": url}
|
301 |
else:
|
302 |
result = {"status": "success", "message": "Image generated but not uploaded"}
|
303 |
|
304 |
+
return json.dumps(result)
|
|
|
305 |
|
306 |
|
307 |
with gr.Blocks() as demo:
|
|
|
360 |
value=0.9,
|
361 |
)
|
362 |
|
|
|
|
|
363 |
with gr.Accordion("Advanced Settings", open=False):
|
364 |
|
|
|
365 |
with gr.Row():
|
366 |
mask_inflation_slider_component = gr.Slider(
|
367 |
label="Mask inflation",
|
|
|
418 |
)
|
419 |
|
420 |
upload_to_r2 = gr.Checkbox(label="Upload to R2", value=False)
|
421 |
+
with gr.Row():
|
422 |
+
account_id = gr.Textbox(label="Account Id", placeholder="Enter R2 account id")
|
423 |
+
bucket = gr.Textbox(label="Bucket Name", placeholder="Enter R2 bucket name here")
|
424 |
+
|
425 |
+
with gr.Row():
|
426 |
+
access_key = gr.Textbox(label="Access Key", placeholder="Enter R2 access key here")
|
427 |
+
secret_key = gr.Textbox(label="Secret Key", placeholder="Enter R2 secret key here")
|
428 |
|
429 |
|
430 |
with gr.Column():
|
431 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
432 |
output_json_component = gr.Textbox()
|
433 |
|
434 |
submit_button_component.click(
|
|
|
453 |
bucket
|
454 |
],
|
455 |
outputs=[
|
|
|
|
|
456 |
output_json_component
|
457 |
]
|
458 |
)
|