File size: 8,811 Bytes
6373ff8
ccc80c2
 
 
8d7d2d7
ccc80c2
6373ff8
 
f93e467
3fc0dd0
6373ff8
8385a65
f93e467
8d7d2d7
2c50a6c
 
 
f93e467
 
2c50a6c
16c2491
3fc0dd0
 
8d7d2d7
 
6373ff8
16c2491
 
ccc80c2
16c2491
a9da525
16c2491
9ecc297
a9da525
f93e467
ccc80c2
6373ff8
 
 
ccc80c2
6373ff8
 
422bc49
 
6373ff8
 
 
 
 
422bc49
 
6373ff8
 
 
 
422bc49
16c2491
2c50a6c
 
9764d93
b5c1016
 
9764d93
 
 
f93e467
2c50a6c
6373ff8
 
 
 
 
9ecc297
f93e467
9764d93
f93e467
53d0f2f
2c50a6c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ccc80c2
2c50a6c
8d7d2d7
422bc49
b5c1016
b8cbb2a
2c50a6c
b8cbb2a
2c50a6c
 
dd84634
2c50a6c
b8cbb2a
73a3a64
 
b8cbb2a
 
 
 
 
 
 
 
 
 
 
627b83a
 
 
 
b8cbb2a
 
4d73de3
b8cbb2a
 
 
 
 
 
 
627b83a
b8cbb2a
 
 
f93e467
6373ff8
9e4bb4a
f93e467
 
f6c2def
f93e467
b5c1016
16c2491
9764d93
16c2491
b5c1016
 
b8cbb2a
9764d93
16c2491
 
2c50a6c
 
 
 
 
 
 
16c2491
b5c1016
b8cbb2a
 
f93e467
ccc80c2
f93e467
ccc80c2
16c2491
 
ccc80c2
 
 
 
 
 
 
 
16c2491
6222acc
ccc80c2
6373ff8
8d7d2d7
b5c1016
 
2c50a6c
6222acc
 
 
 
 
 
 
6373ff8
6222acc
422bc49
 
6222acc
 
422bc49
6222acc
 
f6c2def
 
 
 
 
 
 
6222acc
 
f93e467
 
 
 
2c50a6c
f93e467
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ccc80c2
 
f93e467
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import os
import gradio as gr
import numpy as np
import random
import spaces
import torch
import json
import logging
from diffusers import DiffusionPipeline
from huggingface_hub import login
import time
from datetime import datetime
from io import BytesIO
import torch.nn.functional as F
import time
import boto3
from io import BytesIO
import re
import json

# Login Hugging Face Hub
HF_TOKEN = os.environ.get("HF_TOKEN")
login(token=HF_TOKEN)
import diffusers
print(diffusers.__version__)

# init
dtype = torch.float16  # use float16 for fast generate
device = "cuda" if torch.cuda.is_available() else "cpu"
base_model = "black-forest-labs/FLUX.1-dev"

# load pipe
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype).to(device)

MAX_SEED = 2**32 - 1

class calculateDuration:
    def __init__(self, activity_name=""):
        self.activity_name = activity_name

    def __enter__(self):
        self.start_time = time.time()
        self.start_time_formatted = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(self.start_time))
        print(f"Activity: {self.activity_name}, Start time: {self.start_time_formatted}")
        return self
    
    def __exit__(self, exc_type, exc_value, traceback):
        self.end_time = time.time()
        self.elapsed_time = self.end_time - self.start_time
        self.end_time_formatted = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(self.end_time))
        
        if self.activity_name:
            print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds")
        else:
            print(f"Elapsed time: {self.elapsed_time:.6f} seconds")
        
@spaces.GPU(duration=120)
@torch.inference_mode()
def generate_image(prompt, steps, seed, cfg_scale, width, height, progress):
    with calculateDuration(f"Make a new generator:${seed}"):
        pipe.to(device)
        generator = torch.Generator(device=device).manual_seed(seed)
        
    with calculateDuration("Generating image"):
        # Generate image
        generated_image = pipe(
            prompt=prompt,
            num_inference_steps=steps,
            guidance_scale=cfg_scale,
            width=width,
            height=height,
            generator=generator,
        ).images[0]
    
    progress(99, "Generate image success!")
    return generated_image


def upload_image_to_r2(image, account_id, access_key, secret_key, bucket_name):
    print("upload_image_to_r2", account_id, access_key, secret_key, bucket_name)
    connectionUrl = f"https://{account_id}.r2.cloudflarestorage.com"

    s3 = boto3.client(
        's3',
        endpoint_url=connectionUrl,
        region_name='auto',
        aws_access_key_id=access_key,
        aws_secret_access_key=secret_key
    )

    current_time = datetime.now().strftime("%Y/%m/%d/%H%M%S")
    image_file = f"generated_images/{current_time}_{random.randint(0, MAX_SEED)}.png"
    buffer = BytesIO()
    image.save(buffer, "PNG")
    buffer.seek(0)
    s3.upload_fileobj(buffer, bucket_name, image_file)
    print("upload finish", image_file)
    
    return image_file

def run_lora(prompt, lora_strings_json,  cfg_scale, steps, randomize_seed, seed, width, height, upload_to_r2, account_id, access_key, secret_key, bucket, progress=gr.Progress(track_tqdm=True)):
    print("run_lora", prompt, lora_strings_json, cfg_scale, steps, width, height)
    gr.Info("Starting process")
    # Load LoRA weights
    lora_configs = None
    if lora_strings_json:
        try:
            lora_configs = json.loads(lora_strings_json)
        except:
            gr.Warning("Parse lora config json failed")
            print("parse lora config json failed")
            
        if lora_configs:
            with calculateDuration("Loading LoRA weights"):
                active_adapters = pipe.get_active_adapters()
                print("get_active_adapters", active_adapters)
                adapter_names = []
                adapter_weights = []
                for lora_info in lora_configs:
                    lora_repo = lora_info.get("repo")
                    weights = lora_info.get("weights")
                    adapter_name = lora_info.get("adapter_name")
                    adapter_weight = lora_info.get("adapter_weight")
                    
                    adapter_names.append(adapter_name)
                    adapter_weights.append(adapter_weight)
                    
                    if adapter_name in active_adapters:
                        print(f"Adapter '{adapter_name}' is already loaded, skipping.")
                        continue
                    if lora_repo and weights and adapter_name:
                        # load lora
                        try:
                            pipe.load_lora_weights(lora_repo, weight_name=weights, adapter_name=adapter_name)
                        except ValueError as e:
                            print(f"Error loading LoRA adapter: {e}")
                            continue
                        
                # set lora weights
                if len(adapter_names) > 0:
                    pipe.set_adapters(adapter_names, adapter_weights=adapter_weights)
    
    # Set random seed for reproducibility
    if randomize_seed:
        with calculateDuration("Set random seed"):
            seed = random.randint(0, MAX_SEED)
    
    # Generate image
    error_message = ""
    try:
        print("Start applying for zeroGPU resources")
        final_image = generate_image(prompt, steps, seed, cfg_scale, width, height, progress)
    except Exception as e:
        error_message =  str(e)
        gr.Error(error_message)
        print("Run error", e)
        final_image = None
        
    if final_image:
        if upload_to_r2:
            with calculateDuration("Upload image"):
                url = upload_image_to_r2(final_image, account_id, access_key, secret_key, bucket)
                result = {"status": "success", "message": "upload image success", "url": url}
        else:
            result = {"status": "success", "message": "Image generated but not uploaded"}
    else:
        result = {"status": "failed", "message": error_message}

    gr.Info("Completed!")
    progress(100, "Completed!")

    return final_image, seed, json.dumps(result)

# Gradio interface

css="""
#col-container {
    margin: 0 auto;
    max-width: 640px;
}
"""

with gr.Blocks(css=css) as demo:
    gr.Markdown("flux-dev-multi-lora")
    with gr.Row():
        
        with gr.Column():

            prompt = gr.Text(label="Prompt", placeholder="Enter prompt", lines=10)
            lora_strings_json = gr.Text(label="LoRA Configs (JSON List String)", placeholder='[{"repo": "lora_repo1", "weights": "weights1", "adapter_name": "adapter_name1", "adapter_weight": 1}, {"repo": "lora_repo2", "weights": "weights2", "adapter_name": "adapter_name2", "adapter_weight": 1}]', lines=5)
            
            run_button = gr.Button("Run", scale=0)

            with gr.Accordion("Advanced Settings", open=False):

                with gr.Row():
                    seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
                    randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

                with gr.Row():
                    width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024)
                    height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024)

                with gr.Row():
                    cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=3.5)
                    steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=28) 

                upload_to_r2 = gr.Checkbox(label="Upload to R2", value=False)
                account_id = gr.Textbox(label="Account Id", placeholder="Enter R2 account id")
                access_key = gr.Textbox(label="Access Key", placeholder="Enter R2 access key here")
                secret_key = gr.Textbox(label="Secret Key", placeholder="Enter R2 secret key here")
                bucket = gr.Textbox(label="Bucket Name", placeholder="Enter R2 bucket name here")
        

        with gr.Column():
            result = gr.Image(label="Result", show_label=False)
            seed_output = gr.Text(label="Seed")
            json_text = gr.Text(label="Result JSON")

    inputs = [
        prompt,
        lora_strings_json,
        cfg_scale,
        steps,
        randomize_seed,
        seed,
        width,
        height,
        upload_to_r2,
        account_id,
        access_key,
        secret_key,
        bucket
    ]

    outputs = [result, seed_output, json_text]

    run_button.click(
        fn=run_lora,
        inputs=inputs,
        outputs=outputs
    )

demo.queue().launch()