Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import gradio as gr | |
import numpy as np | |
import random | |
import spaces | |
import torch | |
import json | |
import logging | |
from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL, AutoPipelineForImage2Image | |
from huggingface_hub import login | |
from diffusers.utils import load_image | |
import time | |
from datetime import datetime | |
from io import BytesIO | |
import torch.nn.functional as F | |
from PIL import Image, ImageFilter | |
import time | |
import boto3 | |
from io import BytesIO | |
import re | |
import json | |
# Login Hugging Face Hub | |
HF_TOKEN = os.environ.get("HF_TOKEN") | |
login(token=HF_TOKEN) | |
import diffusers | |
# init | |
dtype = torch.bfloat16 | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
base_model = "black-forest-labs/FLUX.1-dev" | |
# load pipe | |
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device) | |
good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype).to(device) | |
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype).to(device) | |
# img2img model | |
img2img = AutoPipelineForImage2Image.from_pretrained(base_model, | |
vae=good_vae, | |
transformer=pipe.transformer, | |
text_encoder=pipe.text_encoder, | |
tokenizer=pipe.tokenizer, | |
text_encoder_2=pipe.text_encoder_2, | |
tokenizer_2=pipe.tokenizer_2, | |
torch_dtype=dtype | |
) | |
MAX_SEED = 2**32 - 1 | |
class calculateDuration: | |
def __init__(self, activity_name=""): | |
self.activity_name = activity_name | |
def __enter__(self): | |
self.start_time = time.time() | |
self.start_time_formatted = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(self.start_time)) | |
print(f"Activity: {self.activity_name}, Start time: {self.start_time_formatted}") | |
return self | |
def __exit__(self, exc_type, exc_value, traceback): | |
self.end_time = time.time() | |
self.elapsed_time = self.end_time - self.start_time | |
self.end_time_formatted = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(self.end_time)) | |
if self.activity_name: | |
print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds") | |
else: | |
print(f"Elapsed time: {self.elapsed_time:.6f} seconds") | |
def generate_image(orginal_image, prompt, adapter_names, steps, seed, image_strength, cfg_scale, width, height, progress): | |
gr.Info("Start to generate images ...") | |
with calculateDuration(f"Make a new generator:{seed}"): | |
pipe.to(device) | |
generator = torch.Generator(device=device).manual_seed(seed) | |
with calculateDuration("Generating image"): | |
# Generate image | |
joint_attention_kwargs = {"scale": 1} | |
if orginal_image: | |
generated_image = img2img( | |
prompt=prompt, | |
image=orginal_image, | |
strength=image_strength, | |
num_inference_steps=steps, | |
guidance_scale=cfg_scale, | |
width=width, | |
height=height, | |
generator=generator, | |
joint_attention_kwargs=joint_attention_kwargs | |
).images[0] | |
else: | |
generated_image = pipe( | |
prompt=prompt, | |
num_inference_steps=steps, | |
guidance_scale=cfg_scale, | |
width=width, | |
height=height, | |
max_sequence_length=512, | |
generator=generator, | |
joint_attention_kwargs=joint_attention_kwargs | |
).images[0] | |
progress(99, "Generate image success!") | |
return generated_image | |
def upload_image_to_r2(image, account_id, access_key, secret_key, bucket_name): | |
with calculateDuration("Upload images"): | |
print("upload_image_to_r2", account_id, access_key, secret_key, bucket_name) | |
connectionUrl = f"https://{account_id}.r2.cloudflarestorage.com" | |
s3 = boto3.client( | |
's3', | |
endpoint_url=connectionUrl, | |
region_name='auto', | |
aws_access_key_id=access_key, | |
aws_secret_access_key=secret_key | |
) | |
current_time = datetime.now().strftime("%Y/%m/%d/%H%M%S") | |
image_file = f"generated_images/{current_time}_{random.randint(0, MAX_SEED)}.png" | |
buffer = BytesIO() | |
image.save(buffer, "PNG") | |
buffer.seek(0) | |
s3.upload_fileobj(buffer, bucket_name, image_file) | |
print("upload finish", image_file) | |
# start to generate thumbnail | |
thumbnail = image.copy() | |
thumbnail_width = 256 | |
aspect_ratio = image.height / image.width | |
thumbnail_height = int(thumbnail_width * aspect_ratio) | |
thumbnail = thumbnail.resize((thumbnail_width, thumbnail_height), Image.LANCZOS) | |
# Generate the thumbnail image filename | |
thumbnail_file = image_file.replace(".png", "_thumbnail.png") | |
# Save thumbnail to buffer and upload | |
thumbnail_buffer = BytesIO() | |
thumbnail.save(thumbnail_buffer, "PNG") | |
thumbnail_buffer.seek(0) | |
s3.upload_fileobj(thumbnail_buffer, bucket_name, thumbnail_file) | |
print("upload thumbnail finish", thumbnail_file) | |
return image_file | |
def run_lora(prompt, image_url, lora_strings_json, image_strength, cfg_scale, steps, randomize_seed, seed, width, height, upload_to_r2, account_id, access_key, secret_key, bucket, progress=gr.Progress(track_tqdm=True)): | |
print("run_lora", prompt, lora_strings_json, cfg_scale, steps, width, height) | |
gr.Info("Starting process") | |
img2img_model = False | |
orginal_image = None | |
if image_url: | |
orginal_image = load_image(image_url) | |
img2img_model = True | |
# Set random seed for reproducibility | |
if randomize_seed: | |
with calculateDuration("Set random seed"): | |
seed = random.randint(0, MAX_SEED) | |
# Load LoRA weights | |
gr.Info("Start to load LoRA ...") | |
lora_configs = None | |
adapter_names = [] | |
if lora_strings_json: | |
try: | |
lora_configs = json.loads(lora_strings_json) | |
except: | |
gr.Warning("Parse lora config json failed") | |
print("parse lora config json failed") | |
if lora_configs: | |
with calculateDuration("Loading LoRA weights"): | |
adapter_weights = [] | |
for lora_info in lora_configs: | |
lora_repo = lora_info.get("repo") | |
weights = lora_info.get("weights") | |
adapter_name = lora_info.get("adapter_name") | |
adapter_weight = lora_info.get("adapter_weight") | |
adapter_names.append(adapter_name) | |
adapter_weights.append(adapter_weight) | |
if lora_repo and weights and adapter_name: | |
try: | |
if img2img_model: | |
img2img.load_lora_weights(lora_repo, weight_name=weights, adapter_name=adapter_name) | |
else: | |
pipe.load_lora_weights(lora_repo, weight_name=weights, adapter_name=adapter_name) | |
except: | |
print("load lora error") | |
# set lora weights | |
if len(adapter_names) > 0: | |
if img2img_model: | |
img2img.set_adapters(adapter_names, adapter_weights=adapter_weights) | |
else: | |
pipe.set_adapters(adapter_names, adapter_weights=adapter_weights) | |
# Generate image | |
error_message = "" | |
try: | |
print("Start applying for zeroGPU resources") | |
final_image = generate_image(orginal_image, prompt, adapter_names, steps, seed, image_strength, cfg_scale, width, height, progress) | |
except Exception as e: | |
error_message = str(e) | |
gr.Error(error_message) | |
print("Run error", e) | |
final_image = None | |
if final_image: | |
if upload_to_r2: | |
url = upload_image_to_r2(final_image, account_id, access_key, secret_key, bucket) | |
result = {"status": "success", "message": "upload image success", "url": url} | |
else: | |
result = {"status": "success", "message": "Image generated but not uploaded"} | |
else: | |
result = {"status": "failed", "message": error_message} | |
gr.Info("Completed!") | |
progress(100, "Completed!") | |
return final_image, seed, json.dumps(result) | |
# Gradio interface | |
css=""" | |
#col-container { | |
margin: 0 auto; | |
max-width: 640px; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
gr.Markdown("flux-dev-multi-lora") | |
with gr.Row(): | |
with gr.Column(): | |
prompt = gr.Text(label="Prompt", placeholder="Enter prompt", lines=10) | |
lora_strings_json = gr.Text(label="LoRA Configs (JSON List String)", placeholder='[{"repo": "lora_repo1", "weights": "weights1", "adapter_name": "adapter_name1", "adapter_weight": 1}, {"repo": "lora_repo2", "weights": "weights2", "adapter_name": "adapter_name2", "adapter_weight": 1}]', lines=5) | |
image_url = gr.Text(label="Image url", placeholder="Enter image url to enable image to image model", lines=1) | |
run_button = gr.Button("Run", scale=0) | |
with gr.Accordion("Advanced Settings", open=False): | |
with gr.Row(): | |
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024) | |
height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024) | |
with gr.Row(): | |
image_strength = gr.Slider(label="Denoise Strength", info="Lower means more image influence", minimum=0.1, maximum=1.0, step=0.01, value=0.75) | |
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=3.5) | |
steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=28) | |
upload_to_r2 = gr.Checkbox(label="Upload to R2", value=False) | |
account_id = gr.Textbox(label="Account Id", placeholder="Enter R2 account id") | |
access_key = gr.Textbox(label="Access Key", placeholder="Enter R2 access key here") | |
secret_key = gr.Textbox(label="Secret Key", placeholder="Enter R2 secret key here") | |
bucket = gr.Textbox(label="Bucket Name", placeholder="Enter R2 bucket name here") | |
with gr.Column(): | |
result = gr.Image(label="Result", show_label=False) | |
seed_output = gr.Text(label="Seed") | |
json_text = gr.Text(label="Result JSON") | |
gr.Markdown("**Disclaimer:**") | |
gr.Markdown( | |
"This demo is only for research purpose. This space owner cannot be held responsible for the generation of NSFW (Not Safe For Work) content through the use of this demo. Users are solely responsible for any content they create, and it is their obligation to ensure that it adheres to appropriate and ethical standards. This space owner provides the tools, but the responsibility for their use lies with the individual user." | |
) | |
inputs = [ | |
prompt, | |
image_url, | |
lora_strings_json, | |
image_strength, | |
cfg_scale, | |
steps, | |
randomize_seed, | |
seed, | |
width, | |
height, | |
upload_to_r2, | |
account_id, | |
access_key, | |
secret_key, | |
bucket | |
] | |
outputs = [result, seed_output, json_text] | |
run_button.click( | |
fn=run_lora, | |
inputs=inputs, | |
outputs=outputs | |
) | |
try: | |
demo.queue().launch() | |
except: | |
print("demo exception ...") |